渤海大学学报(自然科学版)
渤海大學學報(自然科學版)
발해대학학보(자연과학판)
Journal of Bohai University(Natural Science Edition)
2015年
3期
256-263
,共8页
鲁棒协同过滤%托攻击%矩阵分解%个体特征%可疑用户
魯棒協同過濾%託攻擊%矩陣分解%箇體特徵%可疑用戶
로봉협동과려%탁공격%구진분해%개체특정%가의용호
robust collaborative filtering%shilling attacks%matrix factorization%individual features%suspi-cious users
针对现有推荐算法鲁棒性差的问题,提出一种融入个体特征差异的鲁棒协同过滤推荐算法.首先,根据用户评分信息的分布情况,给出用户评分个数偏离度和用户近邻平均相似度两个个体特征计算方法;然后基于真实用户和攻击用户个体特征的差异性,提出一种可疑用户标记算法;最后将可疑用户标记算法与矩阵分解技术相结合,对目标用户进行推荐.在MovieLens数据集上通过实验比较了提出的算法和其他相关算法的性能,实验结果表明算法不仅能够提高推荐精度,而且具有较强的鲁棒性.
針對現有推薦算法魯棒性差的問題,提齣一種融入箇體特徵差異的魯棒協同過濾推薦算法.首先,根據用戶評分信息的分佈情況,給齣用戶評分箇數偏離度和用戶近鄰平均相似度兩箇箇體特徵計算方法;然後基于真實用戶和攻擊用戶箇體特徵的差異性,提齣一種可疑用戶標記算法;最後將可疑用戶標記算法與矩陣分解技術相結閤,對目標用戶進行推薦.在MovieLens數據集上通過實驗比較瞭提齣的算法和其他相關算法的性能,實驗結果錶明算法不僅能夠提高推薦精度,而且具有較彊的魯棒性.
침대현유추천산법로봉성차적문제,제출일충융입개체특정차이적로봉협동과려추천산법.수선,근거용호평분신식적분포정황,급출용호평분개수편리도화용호근린평균상사도량개개체특정계산방법;연후기우진실용호화공격용호개체특정적차이성,제출일충가의용호표기산법;최후장가의용호표기산법여구진분해기술상결합,대목표용호진행추천.재MovieLens수거집상통과실험비교료제출적산법화기타상관산법적성능,실험결과표명산법불부능구제고추천정도,이차구유교강적로봉성.
The existing recommendation algorithms have poor robustness against shilling attacks.In this con-sideration,in this paper we propose a robust recommendation algorithm incorporated with the difference of indi-vidual features.We first give two individual features which are user′s deviation degree of rating numbers and av-erage similarity of user′s neighbors.According to the distribution of users′ratings,we introduce the computation-al methods of individual features.Then we give the algorithm which can be used to label suspicious users based on the differences of computational results of individual features.Finally,we incorporate the matrix factorization technology with the identification results of suspicious users to make recommendations for users.Experimental re-sults show that the proposed algorithm not only improves the recommendation accuracy, but also has better ro-bustness.