中国电机工程学报
中國電機工程學報
중국전궤공정학보
Proceedings of the CSEE
2015年
20期
5135-5146,后插2
,共13页
叶希%鲁宗相%乔颖%闵勇
葉希%魯宗相%喬穎%閔勇
협희%로종상%교영%민용
集群风电%虚拟机组%时变概率分布%不确定性%波动性
集群風電%虛擬機組%時變概率分佈%不確定性%波動性
집군풍전%허의궤조%시변개솔분포%불학정성%파동성
wind farm cluster%virtual power generation unit%time-varying probabilistic distribution%uncertainty%variability
在中国风电集中接入发展模式下,集群风电以虚拟机组(wind farm cluster virtual power generation unit,WCVPG)形式参与运行可提高其可调度性.对 WCVPG 出力特性的准确建模是将其纳入调度运行的基础.该模型的核心是风电的不确定性和波动性概率模型,其概率分布具有非平稳的特点,难以直接推导其解析表达式.该文提出一种建立WCVPG不同时段时变概率分布的方法.首先,基于非平稳随机过程概念,定义了概率分布和互相关系数时变特性;然后,基于实测数据论证了风电时变特性的客观存在.在此基础上,提出了一种基于离线时变状态相依模型集和在线蒙特卡罗抽样的WCVPG时变概率建模方法,基于实际系统和数据验证了其有效性,并证明了考虑风电概率分布时变特性可提高建模精度.
在中國風電集中接入髮展模式下,集群風電以虛擬機組(wind farm cluster virtual power generation unit,WCVPG)形式參與運行可提高其可調度性.對 WCVPG 齣力特性的準確建模是將其納入調度運行的基礎.該模型的覈心是風電的不確定性和波動性概率模型,其概率分佈具有非平穩的特點,難以直接推導其解析錶達式.該文提齣一種建立WCVPG不同時段時變概率分佈的方法.首先,基于非平穩隨機過程概唸,定義瞭概率分佈和互相關繫數時變特性;然後,基于實測數據論證瞭風電時變特性的客觀存在.在此基礎上,提齣瞭一種基于離線時變狀態相依模型集和在線矇特卡囉抽樣的WCVPG時變概率建模方法,基于實際繫統和數據驗證瞭其有效性,併證明瞭攷慮風電概率分佈時變特性可提高建模精度.
재중국풍전집중접입발전모식하,집군풍전이허의궤조(wind farm cluster virtual power generation unit,WCVPG)형식삼여운행가제고기가조도성.대 WCVPG 출력특성적준학건모시장기납입조도운행적기출.해모형적핵심시풍전적불학정성화파동성개솔모형,기개솔분포구유비평은적특점,난이직접추도기해석표체식.해문제출일충건립WCVPG불동시단시변개솔분포적방법.수선,기우비평은수궤과정개념,정의료개솔분포화호상관계수시변특성;연후,기우실측수거론증료풍전시변특성적객관존재.재차기출상,제출료일충기우리선시변상태상의모형집화재선몽특잡라추양적WCVPG시변개솔건모방법,기우실제계통화수거험증료기유효성,병증명료고필풍전개솔분포시변특성가제고건모정도.
Wind farm cluster virtual power generation (WCVPG) unit is a potential way to increase wind power's dispatch ability in China's centralized wind power development mode. Building WCVPG's output characteristic model is the foundation to consider WCVPG in dispatch strategy. Therefore, the main task here is to establish uncertainty and variability probabilistic distribution models. These probabilistic distribution models have the characteristic of non-stationary, which is difficult to obtain their analytic expression. Therefore, this paper proposed a method to build the time-varying probabilistic distributions for WCVPG during different time periods. Firstly, based on the concepts of non-stationary random process, the concepts of time-varying probabilistic distribution and time-varying cross correlation coefficient were defined. Afterwards, the existence of wind power's time-varying characteristic was demonstrated based on measured data. Then, a time-varying probabilistic distribution model method was proposed based on the offline time-varying state dependent model set and online Monte Carlo Sampling. Finally, the effectiveness of this method was verified by real system and measured data. The results show that considering the time-varying characteristic of wind power probabilistic distribution can increase the modeling accuracy.