煤矿开采
煤礦開採
매광개채
Coal Mining Technology
2015年
5期
66-69
,共4页
坚硬顶板%大采高%来压步距%数值模拟
堅硬頂闆%大採高%來壓步距%數值模擬
견경정판%대채고%래압보거%수치모의
hard roof%large mining height%roof weighting pace%numerical simulation
针对坚硬顶板大采高工作面顶板控制困难的问题,研究了工作面矿压显现规律。通过现场调研、力学分析建立了工作面上方坚硬顶板的“悬臂梁-砌体梁”结构的简化模型。力学分析表明工作面矿压显现主要受悬臂梁的影响,高位砌体梁对回采空间矿压显现影响不大。通过材料力学的计算原理得到晋城泉头煤矿15301工作面初次来压步距为47.76m,周期来压步距为19.43m。通过数值模拟得到工作面初次来压步距约为42.35m,周期来压步距约为17.28m,矿压实测周期来压步距平均16.19m。结果表明:理论计算和数值模拟结果与矿压实测周期来压步距接近,力学模型可以解释该矿顶板破断规律。
針對堅硬頂闆大採高工作麵頂闆控製睏難的問題,研究瞭工作麵礦壓顯現規律。通過現場調研、力學分析建立瞭工作麵上方堅硬頂闆的“懸臂樑-砌體樑”結構的簡化模型。力學分析錶明工作麵礦壓顯現主要受懸臂樑的影響,高位砌體樑對迴採空間礦壓顯現影響不大。通過材料力學的計算原理得到晉城泉頭煤礦15301工作麵初次來壓步距為47.76m,週期來壓步距為19.43m。通過數值模擬得到工作麵初次來壓步距約為42.35m,週期來壓步距約為17.28m,礦壓實測週期來壓步距平均16.19m。結果錶明:理論計算和數值模擬結果與礦壓實測週期來壓步距接近,力學模型可以解釋該礦頂闆破斷規律。
침대견경정판대채고공작면정판공제곤난적문제,연구료공작면광압현현규률。통과현장조연、역학분석건립료공작면상방견경정판적“현비량-체체량”결구적간화모형。역학분석표명공작면광압현현주요수현비량적영향,고위체체량대회채공간광압현현영향불대。통과재료역학적계산원리득도진성천두매광15301공작면초차래압보거위47.76m,주기래압보거위19.43m。통과수치모의득도공작면초차래압보거약위42.35m,주기래압보거약위17.28m,광압실측주기래압보거평균16.19m。결과표명:이론계산화수치모의결과여광압실측주기래압보거접근,역학모형가이해석해광정판파단규률。
In order to solve the difficult problem of hard roof control in large-mining-height mining face, a simplified “cantilever beam-voussoir beam” structure model of hard roof was set up with mechanics theory. Mechanics analysis showed that underground pres-sure behavior was mainly influenced by cantilever beam. Based on material mechanics, the first roof weighting pace of 15301 mining face was obtained to be 47. 76m, and periodical weighting pace was about 19. 43m. Through the numerical simulation, the first roof weighting pace of the mining face was about 42. 35m, and periodical weighting pace was about 17. 28m, periodical weighting pace of measurement was 16. 19m. Theoretical calculation and numerical simulation results were near observation data which showed that the mechanics model could explain roof breakage rule of the mine.