中国石油大学学报(自然科学版)
中國石油大學學報(自然科學版)
중국석유대학학보(자연과학판)
Journal of China University of Petroleum (Edition of Natural Science)
2015年
5期
107-116
,共10页
贾品%程林松%黄世军%李权
賈品%程林鬆%黃世軍%李權
가품%정림송%황세군%리권
压裂裂缝网络%星三角变换法%有限差分%点源函数%瞬态响应
壓裂裂縫網絡%星三角變換法%有限差分%點源函數%瞬態響應
압렬렬봉망락%성삼각변환법%유한차분%점원함수%순태향응
hydraulic fracture networks%star-delta transformation%finite difference method%point source function%transient responses
与压裂单条缝及多条缝的流动模式不同,包含相互交错裂缝的压裂裂缝网络流动会在裂缝交汇处产生流向重定向和流量重分配的过程。通过引入星三角变换法,并结合有限差分方法对这一特殊流动过程进行描述,推导裂缝网络内部流动数值解。基于Laplace空间源函数及叠加原理建立油藏流动解析解。耦合该两部分流动,给出一个压裂裂缝网络不稳态流动半解析模型,并利用现场实例验证模型的实用性。结果表明:该模型可以处理裂缝空间位置和导流能力任意分布的裂缝网络,能够预测生产井的压力、产量动态及不同生产阶段的油藏压力分布;在上下封闭无界储层中,压裂缝网存在裂缝内部线性流、裂缝与地层双线性流、地层线性流、过渡流以及拟径向流;受井筒存储效应的影响,观测不到裂缝内部线性流;渗透率为1×10-7μm2级别的储层在生产早、中期流体流动主要集中在密度大及导流能力高的裂缝附近,但最终(生产30~50 a)的泄流区域都局限在压裂改造范围内,改造区外的储层流体很少流动。
與壓裂單條縫及多條縫的流動模式不同,包含相互交錯裂縫的壓裂裂縫網絡流動會在裂縫交彙處產生流嚮重定嚮和流量重分配的過程。通過引入星三角變換法,併結閤有限差分方法對這一特殊流動過程進行描述,推導裂縫網絡內部流動數值解。基于Laplace空間源函數及疊加原理建立油藏流動解析解。耦閤該兩部分流動,給齣一箇壓裂裂縫網絡不穩態流動半解析模型,併利用現場實例驗證模型的實用性。結果錶明:該模型可以處理裂縫空間位置和導流能力任意分佈的裂縫網絡,能夠預測生產井的壓力、產量動態及不同生產階段的油藏壓力分佈;在上下封閉無界儲層中,壓裂縫網存在裂縫內部線性流、裂縫與地層雙線性流、地層線性流、過渡流以及擬徑嚮流;受井筒存儲效應的影響,觀測不到裂縫內部線性流;滲透率為1×10-7μm2級彆的儲層在生產早、中期流體流動主要集中在密度大及導流能力高的裂縫附近,但最終(生產30~50 a)的洩流區域都跼限在壓裂改造範圍內,改造區外的儲層流體很少流動。
여압렬단조봉급다조봉적류동모식불동,포함상호교착렬봉적압렬렬봉망락류동회재렬봉교회처산생류향중정향화류량중분배적과정。통과인입성삼각변환법,병결합유한차분방법대저일특수류동과정진행묘술,추도렬봉망락내부류동수치해。기우Laplace공간원함수급첩가원리건립유장류동해석해。우합해량부분류동,급출일개압렬렬봉망락불은태류동반해석모형,병이용현장실례험증모형적실용성。결과표명:해모형가이처리렬봉공간위치화도류능력임의분포적렬봉망락,능구예측생산정적압력、산량동태급불동생산계단적유장압력분포;재상하봉폐무계저층중,압렬봉망존재렬봉내부선성류、렬봉여지층쌍선성류、지층선성류、과도류이급의경향류;수정통존저효응적영향,관측불도렬봉내부선성류;삼투솔위1×10-7μm2급별적저층재생산조、중기류체류동주요집중재밀도대급도류능력고적렬봉부근,단최종(생산30~50 a)적설류구역도국한재압렬개조범위내,개조구외적저층류체흔소류동。
Comparing with the flow in single and multiple fractures, the flow behaviors in hydraulic fractured networks that consist of interconnected fractures are featured of flow redirection and flux redistibution at fracture intersections. In this paper, the flow behavior in fractured networks was modeled and the numerical solution was given by combining star-delta transformation and finite difference methods. An analytical solution for the flow in reservoir matrix was obtained based on source functions in Laplace domain and superposition principles. A semi-analytical model for the transient flow in hydraulic fractured networks was derived by dynamically coupling these two flow processes. The model was verified with a field case study. The results show that the semi-analytical model can be applied to fracture networks with arbitrary geometry and variable fracture conductivity. The transient bottomhole pressure and production rate can be solved along with reservoir pressure distribution during different pro-duction periods. In an infinite slabed reservoir, the flow in hydraulic fractured networks can be classified into five flow re-gimes, including the fracture linear flow, bilinear flow, formation linear flow, transient flow and pseudo-radial flow. The after-flow caused by wellbore storage effect may overshadow the fracture linear flow. For the reservoirs with permeability of 1×10-7μm2 , the fluid drainage occurs primarily in the vicinity of the fractures with large density and higher conductivity at the early-middle production periods. However, the ultimate depletion ( e. g. after 30-50 years of production) is still limited to the region of the stimulated reservoir volume and the fluid flow beyond the stimulated region makes little contribution to the total produc-tion.