中国电机工程学报
中國電機工程學報
중국전궤공정학보
Proceedings of the CSEE
2015年
11期
2703-2710,后插8
,共9页
高压直流输电%交流滤波器%最大并联阻抗%拉格朗日乘数法
高壓直流輸電%交流濾波器%最大併聯阻抗%拉格朗日乘數法
고압직류수전%교류려파기%최대병련조항%랍격랑일승수법
HVDC%AC filter%maximum parallel impedance (MPI)%Lagrange multiplier method
作为高压直流输电的重要组成部分,交流滤波器在抑制谐波和无功补偿方面发挥着巨大的作用.在滤波器的设计中需要进行性能和稳态定值计算,二者都需要得到滤波器阻抗与系统阻抗的并联阻抗最大幅值,以计算最大谐波电压畸变和滤波器元件的最大电流应力.将拉格朗日乘数法引入到滤波器阻抗与系统阻抗的并联极大值计算中,首先从理论分析的角度证明,在系统阻抗和滤波器阻抗的电阻值均不为负时,并联阻抗极大值点位于系统阻抗区域的边界线上.然后,提出目前常用的系统阻抗区域类型的并联阻抗极大值点的计算方法,并给出相应的求解公式,最后利用仿真分析法验证本文算法的有效性.对比结果表明:所提出的方法在计算精度方面有较大优势,比利用找谐振点法得到的结果更加符合实际工程的要求.
作為高壓直流輸電的重要組成部分,交流濾波器在抑製諧波和無功補償方麵髮揮著巨大的作用.在濾波器的設計中需要進行性能和穩態定值計算,二者都需要得到濾波器阻抗與繫統阻抗的併聯阻抗最大幅值,以計算最大諧波電壓畸變和濾波器元件的最大電流應力.將拉格朗日乘數法引入到濾波器阻抗與繫統阻抗的併聯極大值計算中,首先從理論分析的角度證明,在繫統阻抗和濾波器阻抗的電阻值均不為負時,併聯阻抗極大值點位于繫統阻抗區域的邊界線上.然後,提齣目前常用的繫統阻抗區域類型的併聯阻抗極大值點的計算方法,併給齣相應的求解公式,最後利用倣真分析法驗證本文算法的有效性.對比結果錶明:所提齣的方法在計算精度方麵有較大優勢,比利用找諧振點法得到的結果更加符閤實際工程的要求.
작위고압직류수전적중요조성부분,교류려파기재억제해파화무공보상방면발휘착거대적작용.재려파기적설계중수요진행성능화은태정치계산,이자도수요득도려파기조항여계통조항적병련조항최대폭치,이계산최대해파전압기변화려파기원건적최대전류응력.장랍격랑일승수법인입도려파기조항여계통조항적병련겁대치계산중,수선종이론분석적각도증명,재계통조항화려파기조항적전조치균불위부시,병련조항겁대치점위우계통조항구역적변계선상.연후,제출목전상용적계통조항구역류형적병련조항겁대치점적계산방법,병급출상응적구해공식,최후이용방진분석법험증본문산법적유효성.대비결과표명:소제출적방법재계산정도방면유교대우세,비이용조해진점법득도적결과경가부합실제공정적요구.
As an important part of the HVDC system, AC filter is used to suppress the harmonics and compensate the reactive power in the AC side. It is necessary to determine the maximum parallel impedance (MPI) between the AC filter and AC network in implementing the performance and steady rating computation which are two major parts in the processing design of AC filter. In fact, the MPI can also be used to calculate the maximum voltage distortion on the specific bus and the maximum current stress of AC filter. In this paper, the Lagrange multiplier method was introduced to implement the computation of the MPI. Firstly, it was proved in theory that the value of MPI must be on the boundary of the AC network impedance zoom when the resistances of the AC network and the AC filter were both non-negative. Then, the basic steps of the common utilized method, as well as the principle and solution formula of the proposed method were analyzed. Finally, the validity and effectiveness of the proposed methods were compared with the common used method by the simulation model. The comparison result shows that the presented Lagrange multiplier method has a better performance in computation accuracy and it is closer to the reality of the HVDC system.