机床与液压
機床與液壓
궤상여액압
Machine Tool & Hydraulics
2015年
18期
11-17
,共7页
风力机%翼型%覆冰%气动性能
風力機%翼型%覆冰%氣動性能
풍력궤%익형%복빙%기동성능
Wind turbine%Airfoil%Ice coating%Aerodynamic performance
以某1.5 MW 风机叶片 S818翼型为研究对象,建立了翼型流场有限元分析模型。采用基于 Reynolds 平均的 Navier-Stokes 不可压缩粘性方程作为流动控制方程,对无冰翼型、霜冰、弦长冰及角冰翼型进行数值模拟分析,得到了-2°-20°攻角下不同厚度叶片翼型的升阻比、速度矢量和表面压力分布。研究结果表明:覆冰越厚,翼型的最大升阻比降幅越大。对于弦长冰和角冰在厚度达到一定值时,使得升阻比损失产生较大的突变。在覆冰厚度都为10 mm 时,角冰的最大升阻比减幅最大,达到22.04%;其次是弦长冰为11.97%,霜冰的最小为6.41%。同时结冰后的翼型会提前进入失速区,导致桨叶气动性能恶化,降低了风机的功率系数。
以某1.5 MW 風機葉片 S818翼型為研究對象,建立瞭翼型流場有限元分析模型。採用基于 Reynolds 平均的 Navier-Stokes 不可壓縮粘性方程作為流動控製方程,對無冰翼型、霜冰、絃長冰及角冰翼型進行數值模擬分析,得到瞭-2°-20°攻角下不同厚度葉片翼型的升阻比、速度矢量和錶麵壓力分佈。研究結果錶明:覆冰越厚,翼型的最大升阻比降幅越大。對于絃長冰和角冰在厚度達到一定值時,使得升阻比損失產生較大的突變。在覆冰厚度都為10 mm 時,角冰的最大升阻比減幅最大,達到22.04%;其次是絃長冰為11.97%,霜冰的最小為6.41%。同時結冰後的翼型會提前進入失速區,導緻槳葉氣動性能噁化,降低瞭風機的功率繫數。
이모1.5 MW 풍궤협편 S818익형위연구대상,건립료익형류장유한원분석모형。채용기우 Reynolds 평균적 Navier-Stokes 불가압축점성방정작위류동공제방정,대무빙익형、상빙、현장빙급각빙익형진행수치모의분석,득도료-2°-20°공각하불동후도협편익형적승조비、속도시량화표면압력분포。연구결과표명:복빙월후,익형적최대승조비강폭월대。대우현장빙화각빙재후도체도일정치시,사득승조비손실산생교대적돌변。재복빙후도도위10 mm 시,각빙적최대승조비감폭최대,체도22.04%;기차시현장빙위11.97%,상빙적최소위6.41%。동시결빙후적익형회제전진입실속구,도치장협기동성능악화,강저료풍궤적공솔계수。
Taking the S818 airfoil of 1.5 MW wind turbine blade as the research object.Model of the finite ele-ment of airfoil flow field was built in this paper.The non-viscous incompressible Navier-stokes equations are used as flow control equation,which conducted numerical simulation analysis on Ice-free airfoil,airfoil of rime ice, chord-length ice,and horn ice.The pressure distribution are obtained from the lift-drag ratio,velocity vector and surface pressure of different thickness of the blade airfoil in the angle of attack from -2°to 20°.The results showed that the thicker of the ice coating,the shaper maximum lift-drag ratio of airfoil are decreased.Moreover, certain thickness of chord length ice and horn ice leads to the mutation of the loss of lift-drag ratio.When ice thickness is 10 mm,the maximum lift-drag ratio amplitude reduction of horn ice reached the maximum at 22.04%,the chord length ice at 11.97% and rime ice at 6.14%.In addition,the airfoil after icing would enter stall area in advance which deteriorates aerodynamic performance of blade and reduces the power coefficient of wind turbine.