西安电子科技大学学报(自然科学版)
西安電子科技大學學報(自然科學版)
서안전자과기대학학보(자연과학판)
Journal of Xidian University (Natural Science)
2015年
5期
175-182
,共8页
张立朝%毕笃彦%杨源%余旺盛%覃兵
張立朝%畢篤彥%楊源%餘旺盛%覃兵
장립조%필독언%양원%여왕성%담병
视觉跟踪%尺度自适应%不对称高斯混合模型配准%仿射变换%特征点集
視覺跟蹤%呎度自適應%不對稱高斯混閤模型配準%倣射變換%特徵點集
시각근종%척도자괄응%불대칭고사혼합모형배준%방사변환%특정점집
visual tracking%adaptive scale%asymmetrical Gauss mixture models alignment%affine transformation%feature point set
针对视觉目标跟踪中目标尺度发生变化时容易发生跟踪失败的问题,提出基于不对称高斯混合模型配准的尺度自适应目标跟踪方法。不对称高斯混合模型配准把上一帧和当前帧图像的特征点集分别作为高斯混合模型高斯重心和数据点,并将特征信息与空间信息相融合;通过比较数据点与高斯混合模型高斯重心之间的相似程度,对两帧图像之间的点集进行配准,得到当前帧中可靠的特征点;点集的离散程度充分反映了目标尺度大小,通过仿射变换计算图像离散度比例变化,可以准确地估计出当前帧目标框的位置和尺度。实验表明,该算法对目标尺度变化具有较强的自适应性,并且在发生光照变化、复杂背景时,也可以达到很好的效果。
針對視覺目標跟蹤中目標呎度髮生變化時容易髮生跟蹤失敗的問題,提齣基于不對稱高斯混閤模型配準的呎度自適應目標跟蹤方法。不對稱高斯混閤模型配準把上一幀和噹前幀圖像的特徵點集分彆作為高斯混閤模型高斯重心和數據點,併將特徵信息與空間信息相融閤;通過比較數據點與高斯混閤模型高斯重心之間的相似程度,對兩幀圖像之間的點集進行配準,得到噹前幀中可靠的特徵點;點集的離散程度充分反映瞭目標呎度大小,通過倣射變換計算圖像離散度比例變化,可以準確地估計齣噹前幀目標框的位置和呎度。實驗錶明,該算法對目標呎度變化具有較彊的自適應性,併且在髮生光照變化、複雜揹景時,也可以達到很好的效果。
침대시각목표근종중목표척도발생변화시용역발생근종실패적문제,제출기우불대칭고사혼합모형배준적척도자괄응목표근종방법。불대칭고사혼합모형배준파상일정화당전정도상적특정점집분별작위고사혼합모형고사중심화수거점,병장특정신식여공간신식상융합;통과비교수거점여고사혼합모형고사중심지간적상사정도,대량정도상지간적점집진행배준,득도당전정중가고적특정점;점집적리산정도충분반영료목표척도대소,통과방사변환계산도상리산도비례변화,가이준학지고계출당전정목표광적위치화척도。실험표명,해산법대목표척도변화구유교강적자괄응성,병차재발생광조변화、복잡배경시,야가이체도흔호적효과。
A visual object tracking method with the adaptive scale based on AGMM ( Asymmetrical Gauss Mixture Models) point sets matching is proposed aimed at adaptively following the object's scale changes , which often cause tracking failure . As the feature point set in the last frame is considered as the GMM centroids and the feature point set in the current frame represents the data respectively , AGMM fuses the feature information and spatial information;by comparing the similarity between data and GMM centroids , we match the point sets between two adjacent frames and obtain the reliable feature points in the current frame;the degree of dispersion between points in the point set accurately reflects the size of the object scale and by using affine transformation , the proportion of the two point sets is computed to estimate the position and scale of the bounding box in the current frame accurately and effectively . Experimental results demonstrate that the method is adaptive to scale change and has advantage in illumination variation and color similar target tracking .