井冈山大学学报(自然科学版)
井岡山大學學報(自然科學版)
정강산대학학보(자연과학판)
Journal of Jinggangshan University (Natural Sciences Edition)
2015年
5期
53-59
,共7页
汤鹏杰%谭云兰%李金忠%谭彬
湯鵬傑%譚雲蘭%李金忠%譚彬
탕붕걸%담운란%리금충%담빈
图像分类%识别%双流混合%CNN
圖像分類%識彆%雙流混閤%CNN
도상분류%식별%쌍류혼합%CNN
image classification%recognition%two stream mixed transformation%CNN
具有表达能力及可辨别性更强的特征是图像分类与识别技术的关键。深度 CNN 特征经过多次中间非线性变换,特征鲁棒性更强,在图像分类与识别领域已取得重大进展。但传统的 CNN 模型只增加变换层次,下层变换依赖于上层输出结果,因此其中间特征冗余度较低,最终得到的特征向量信息丰富程度不够。本文提出一种基于双流混合变换的CNN模型——DTM-CNN 。该模型首先使用不同大小的感受野卷积核提取图像不同的中间特征,然后在多次深度变换时,对中间特征进行混合流动,经过多次混合变换,最终得到1024维的特征向量,并使用Softmax回归函数对其分类。实验结果表明,该模型经过多次卷积、池化及激活变换,提取的特征更加抽象、语义及结构信息更加丰富,对图像具有更强的表达能力及辨别性,因此图像分类及识别性能优越。
具有錶達能力及可辨彆性更彊的特徵是圖像分類與識彆技術的關鍵。深度 CNN 特徵經過多次中間非線性變換,特徵魯棒性更彊,在圖像分類與識彆領域已取得重大進展。但傳統的 CNN 模型隻增加變換層次,下層變換依賴于上層輸齣結果,因此其中間特徵冗餘度較低,最終得到的特徵嚮量信息豐富程度不夠。本文提齣一種基于雙流混閤變換的CNN模型——DTM-CNN 。該模型首先使用不同大小的感受野捲積覈提取圖像不同的中間特徵,然後在多次深度變換時,對中間特徵進行混閤流動,經過多次混閤變換,最終得到1024維的特徵嚮量,併使用Softmax迴歸函數對其分類。實驗結果錶明,該模型經過多次捲積、池化及激活變換,提取的特徵更加抽象、語義及結構信息更加豐富,對圖像具有更彊的錶達能力及辨彆性,因此圖像分類及識彆性能優越。
구유표체능력급가변별성경강적특정시도상분류여식별기술적관건。심도 CNN 특정경과다차중간비선성변환,특정로봉성경강,재도상분류여식별영역이취득중대진전。단전통적 CNN 모형지증가변환층차,하층변환의뢰우상층수출결과,인차기중간특정용여도교저,최종득도적특정향량신식봉부정도불구。본문제출일충기우쌍류혼합변환적CNN모형——DTM-CNN 。해모형수선사용불동대소적감수야권적핵제취도상불동적중간특정,연후재다차심도변환시,대중간특정진행혼합류동,경과다차혼합변환,최종득도1024유적특정향량,병사용Softmax회귀함수대기분류。실험결과표명,해모형경과다차권적、지화급격활변환,제취적특정경가추상、어의급결구신식경가봉부,대도상구유경강적표체능력급변별성,인차도상분류급식별성능우월。
It is very important for image classification and recognition that the feature is more discriminative and has power representation ability. The deep CNN feature is more robust than other features because of its more non-linear transformation, and great breakthrough has obtained in the field of image classification and recognition based on the CNN. However, in the traditional CNN model, there just increase the transformation layers, and the posterior layer relies on the prior layer. As a result, the intermediate feature has low redundancy, and there is no enough information in the feature. In this paper, we propose a novel CNN model based on two stream and mixed transform. In this model, the intermediate feature is extracted via using different convolution kernels firstly. And then, the mixed feature is generated and flows forward when the deep transform is executed. Finally, we get a 1024D feature vector and classify it with the Softmax regression function. The experiment demonstrates that the feature extracted by the model is more abstract and has richer structural and semantic information via convolution, pooling and activation transformation repeatedly. And so, it has better performance for classification and recognition than other same models.