工程设计学报
工程設計學報
공정설계학보
Chinese Journal of Engineering Design
2015年
5期
412-419
,共8页
陆凤仪%王爽%徐格宁%戚其松
陸鳳儀%王爽%徐格寧%慼其鬆
륙봉의%왕상%서격저%척기송
v-支持向量回归机%核函数%决策函数%载荷谱
v-支持嚮量迴歸機%覈函數%決策函數%載荷譜
v-지지향량회귀궤%핵함수%결책함수%재하보
v-SVRM%kernel function%decision function%load spectrum
载荷谱预测精度和鲁棒性直接影响起重机械的疲劳可靠性计算以及安全寿命评估。因此,绘制模拟实际工作状态的载荷谱是解决起重机械疲劳断裂问题的重要环节。然而传统的回归模拟算法对其预测精度较低。支持向量回归机(SVRM )同其他数据分析算法相比,具有出色的小样本和非线性特性,预测精度高、稳健性好,可较好地解决欠学习、过学习以及局部最小值等传统回归算法的难题。因此,选用支持向量回归机预测起重机载荷谱,提高了模型的预测精度和鲁棒性。在此基础上,从核函数的构造和决策函数的建立两方面的改进,建立了改进的 v‐SVRM预测模型。工程实例分析结果表明:从BP神经网络模型、v‐SVRM模型到改进的v‐SVRM模型,Er和RMSRE逐渐减小,R2逐渐增大,验证了所提出的改进方法具有良好的实用性、鲁棒性以及较高的预测精度,为起重机载荷谱的获取与预测提供了新方法。
載荷譜預測精度和魯棒性直接影響起重機械的疲勞可靠性計算以及安全壽命評估。因此,繪製模擬實際工作狀態的載荷譜是解決起重機械疲勞斷裂問題的重要環節。然而傳統的迴歸模擬算法對其預測精度較低。支持嚮量迴歸機(SVRM )同其他數據分析算法相比,具有齣色的小樣本和非線性特性,預測精度高、穩健性好,可較好地解決欠學習、過學習以及跼部最小值等傳統迴歸算法的難題。因此,選用支持嚮量迴歸機預測起重機載荷譜,提高瞭模型的預測精度和魯棒性。在此基礎上,從覈函數的構造和決策函數的建立兩方麵的改進,建立瞭改進的 v‐SVRM預測模型。工程實例分析結果錶明:從BP神經網絡模型、v‐SVRM模型到改進的v‐SVRM模型,Er和RMSRE逐漸減小,R2逐漸增大,驗證瞭所提齣的改進方法具有良好的實用性、魯棒性以及較高的預測精度,為起重機載荷譜的穫取與預測提供瞭新方法。
재하보예측정도화로봉성직접영향기중궤계적피로가고성계산이급안전수명평고。인차,회제모의실제공작상태적재하보시해결기중궤계피로단렬문제적중요배절。연이전통적회귀모의산법대기예측정도교저。지지향량회귀궤(SVRM )동기타수거분석산법상비,구유출색적소양본화비선성특성,예측정도고、은건성호,가교호지해결흠학습、과학습이급국부최소치등전통회귀산법적난제。인차,선용지지향량회귀궤예측기중궤재하보,제고료모형적예측정도화로봉성。재차기출상,종핵함수적구조화결책함수적건립량방면적개진,건립료개진적 v‐SVRM예측모형。공정실례분석결과표명:종BP신경망락모형、v‐SVRM모형도개진적v‐SVRM모형,Er화RMSRE축점감소,R2축점증대,험증료소제출적개진방법구유량호적실용성、로봉성이급교고적예측정도,위기중궤재하보적획취여예측제공료신방법。
The load spectrum simulation of actual working status is the key factor to solve the problem of crane endurance failure . T he precision and robustness of load spectrum predicting have great significance for reliability analysis of crane fatigue fracture and evaluation of its safety life .However ,the predicting performance of classic linear regression model is weaker .Compared with other data analysis algorithms ,support vector regression machine (SVRM ) has excellent performance for small sample and nonlinear properties ,including higher prediction accuracy and nice robustness .It can also overcome the difficulty of the curse of dimensionality ,local minima and over‐fitting and under‐fitting for traditional pattern recognition methods .So ,accuracy pre‐diction precision and reliability can be obtained by using SVRM .Furthermore ,an improved v‐SVRM prediction model was established with constructing new kernel function and decision func‐tion .T he results of engineering application show ed that the values of Er and of RMSRE all the three models (the BP neural network model and the SVRM model and the modified model of v‐SVRM ) gradually decreased while the fitting degrees R2 gradually increased .It proves that the modified method has higher prediction precision and nicer robustness and it also provides a new way for ob‐taining and predicting crane load spectrum .