计算机工程与应用
計算機工程與應用
계산궤공정여응용
Computer Engineering and Applications
2015年
21期
116-120
,共5页
聚类%粒计算%粗糙集%属性约简
聚類%粒計算%粗糙集%屬性約簡
취류%립계산%조조집%속성약간
clustering%granular computing%rough set%attribute reduction
针对标准鱼群算法易受到初始鱼群随机性的影响,后期收敛速度减慢,处理边界数据能力低,聚类精度低等缺点,提出了基于粒计算与粗糙集的人工鱼群聚类算法。算法引入粒计算理论,并依据粒密度和最大最小距离积法选择初始化人工鱼群避免算法易受随机性的影响;通过结合粗糙集的决策系统和属性约简,提高算法解决边界数据的能力;采用类内紧致性和类间分离度的原则设计适应度函数,并将其作为算法的终止判断条件。实验结果表明:该算法提高了聚类精度,增强了获取全局极值的能力,具有良好的聚类效果。
針對標準魚群算法易受到初始魚群隨機性的影響,後期收斂速度減慢,處理邊界數據能力低,聚類精度低等缺點,提齣瞭基于粒計算與粗糙集的人工魚群聚類算法。算法引入粒計算理論,併依據粒密度和最大最小距離積法選擇初始化人工魚群避免算法易受隨機性的影響;通過結閤粗糙集的決策繫統和屬性約簡,提高算法解決邊界數據的能力;採用類內緊緻性和類間分離度的原則設計適應度函數,併將其作為算法的終止判斷條件。實驗結果錶明:該算法提高瞭聚類精度,增彊瞭穫取全跼極值的能力,具有良好的聚類效果。
침대표준어군산법역수도초시어군수궤성적영향,후기수렴속도감만,처리변계수거능력저,취류정도저등결점,제출료기우립계산여조조집적인공어군취류산법。산법인입립계산이론,병의거립밀도화최대최소거리적법선택초시화인공어군피면산법역수수궤성적영향;통과결합조조집적결책계통화속성약간,제고산법해결변계수거적능력;채용류내긴치성화류간분리도적원칙설계괄응도함수,병장기작위산법적종지판단조건。실험결과표명:해산법제고료취류정도,증강료획취전국겁치적능력,구유량호적취류효과。
Against such shortcomings of the traditional fish-swarm algorithm with the effect of initial fish-group random, easily falling into a local extremum, low efficiency of handling boundary data and low clustering accuracy, an improved artificial fish swarm algorithm based on Rough set and granular computing is proposed. Initially, the algorithm introduces the granular computing theory and initializes the fish group by the density and max-min distance means so that the algo-rithm avoids being effected by random. Meantime the algorithm is combined with rough set and attribute reduction and deci-sion system to resolve the clustering problem of boundary data. With the principles of within-class compactness and between-class separability while designing the fitness function, it also can be regarded as the termination condition of algo-rithm. Experiment results show that the algorithm has enhanced the accuracy and the abilities to obtain global extremum and embodies better clustering performance.