计算机工程与应用
計算機工程與應用
계산궤공정여응용
Computer Engineering and Applications
2015年
21期
243-249
,共7页
张龙%张磊%熊国良%周建民%周继慧
張龍%張磊%熊國良%週建民%週繼慧
장룡%장뢰%웅국량%주건민%주계혜
多尺度熵%二叉树%多分类器%故障诊断
多呎度熵%二扠樹%多分類器%故障診斷
다척도적%이차수%다분류기%고장진단
multiscale entropy%binary tree%multiple classifier%fault diagnosis
多分类器融合能有效集成多种分类算法的优势,实现优势互补,提高智能诊断模型的稳健性和诊断精度。但在利用多数投票法构建多分类器融合决策系统时,要求成员分类器数目多于要识别的设备状态数,否则会出现无法融合的情况。针对此问题,提出了一种基于二叉树的多分类器融合算法,利用二叉树将多类分类问题转化为多个二值分类问题,从而各个节点上的成员分类器个数只要大于2即可,有效避免了成员分类器数目不足的问题。实验结果表明,相比单一分类器的诊断方法,该方法能有效地实现滚动轴承故障智能诊断,并具有对各神经网络初始值不敏感、识别率高且稳定等优势。
多分類器融閤能有效集成多種分類算法的優勢,實現優勢互補,提高智能診斷模型的穩健性和診斷精度。但在利用多數投票法構建多分類器融閤決策繫統時,要求成員分類器數目多于要識彆的設備狀態數,否則會齣現無法融閤的情況。針對此問題,提齣瞭一種基于二扠樹的多分類器融閤算法,利用二扠樹將多類分類問題轉化為多箇二值分類問題,從而各箇節點上的成員分類器箇數隻要大于2即可,有效避免瞭成員分類器數目不足的問題。實驗結果錶明,相比單一分類器的診斷方法,該方法能有效地實現滾動軸承故障智能診斷,併具有對各神經網絡初始值不敏感、識彆率高且穩定等優勢。
다분류기융합능유효집성다충분류산법적우세,실현우세호보,제고지능진단모형적은건성화진단정도。단재이용다수투표법구건다분류기융합결책계통시,요구성원분류기수목다우요식별적설비상태수,부칙회출현무법융합적정황。침대차문제,제출료일충기우이차수적다분류기융합산법,이용이차수장다류분류문제전화위다개이치분류문제,종이각개절점상적성원분류기개수지요대우2즉가,유효피면료성원분류기수목불족적문제。실험결과표명,상비단일분류기적진단방법,해방법능유효지실현곤동축승고장지능진단,병구유대각신경망락초시치불민감、식별솔고차은정등우세。
The fusion of multiple classifiers harnesses the advantages of various classification algorithms, and thus improves the robustness and accuracy of intelligent diagnosis models. When majority voting scheme is employed to construct a multi-classifier decision fusion system, the number of the required member classifiers is usually bound to be larger than that of the patterns to be recognized. Otherwise, it is difficult to achieve decision fusion in certain cases. Aiming at this issue, a multi-classifier fusion algorithm is presented using the form of binary tree, which transforms the multi-classifica-tion problem into a series of binary classification problems. In each binary classification, the number of member classifier is to be larger than 2, thus avoiding the requirement on large number of member classifiers. Experimental results demon-strate the proposed paradigm can effectively improve the recognition accuracy and stability of rolling bearing fault diagnosis in comparison with the diagnosis method based on a single classifier.