气象与减灾研究
氣象與減災研究
기상여감재연구
Meteorology and Disaster Reduction Research
2015年
3期
26-34
,共9页
暴雨%暖区%MCS%中尺度锋区%维持机制
暴雨%暖區%MCS%中呎度鋒區%維持機製
폭우%난구%MCS%중척도봉구%유지궤제
warm rainstorm%MCS%meso-scale frontal zone%maintenance mechanism
利用地面和高空、卫星TBB、多普勒雷达和GFS(0.5°×0.5°)逐6 h再分析等资料,对2011年6月10日江西省西北部一次短历时暖区暴雨中尺度结构及发生维持机制进行分析。结果表明:1)此次过程是在有利的高、低空系统配置下发生在梅雨锋南侧的暖区暴雨,边界层急流和低空急流提供了充足的水汽条件,增强低层热力不稳定;高空分流区使大气动力不稳定发展,高低空急流的耦合作用为MCS维持提供了必备的不稳定机制;中低层热力不稳定,中高层对称不稳定,形成此次对流性强降水。2)地面中尺度辐合线、非锋性斜压带、能量锋的抬升作用为MCS生成和发展提够了启动机制。3)低层强盛的水汽输送、层结不稳定和地面持续而强的中尺度抬升使得多个雷暴单体在江西省西北部连续传播,形成“列车效应”,降水强而集中。4)在水汽和不稳定条件具备的情况下,暖区对流性强降水发生在强低层辐合与强高层辐散相重迭的区域。
利用地麵和高空、衛星TBB、多普勒雷達和GFS(0.5°×0.5°)逐6 h再分析等資料,對2011年6月10日江西省西北部一次短歷時暖區暴雨中呎度結構及髮生維持機製進行分析。結果錶明:1)此次過程是在有利的高、低空繫統配置下髮生在梅雨鋒南側的暖區暴雨,邊界層急流和低空急流提供瞭充足的水汽條件,增彊低層熱力不穩定;高空分流區使大氣動力不穩定髮展,高低空急流的耦閤作用為MCS維持提供瞭必備的不穩定機製;中低層熱力不穩定,中高層對稱不穩定,形成此次對流性彊降水。2)地麵中呎度輻閤線、非鋒性斜壓帶、能量鋒的抬升作用為MCS生成和髮展提夠瞭啟動機製。3)低層彊盛的水汽輸送、層結不穩定和地麵持續而彊的中呎度抬升使得多箇雷暴單體在江西省西北部連續傳播,形成“列車效應”,降水彊而集中。4)在水汽和不穩定條件具備的情況下,暖區對流性彊降水髮生在彊低層輻閤與彊高層輻散相重迭的區域。
이용지면화고공、위성TBB、다보륵뢰체화GFS(0.5°×0.5°)축6 h재분석등자료,대2011년6월10일강서성서북부일차단력시난구폭우중척도결구급발생유지궤제진행분석。결과표명:1)차차과정시재유리적고、저공계통배치하발생재매우봉남측적난구폭우,변계층급류화저공급류제공료충족적수기조건,증강저층열력불은정;고공분류구사대기동력불은정발전,고저공급류적우합작용위MCS유지제공료필비적불은정궤제;중저층열력불은정,중고층대칭불은정,형성차차대류성강강수。2)지면중척도복합선、비봉성사압대、능량봉적태승작용위MCS생성화발전제구료계동궤제。3)저층강성적수기수송、층결불은정화지면지속이강적중척도태승사득다개뇌폭단체재강서성서북부련속전파,형성“열차효응”,강수강이집중。4)재수기화불은정조건구비적정황하,난구대류성강강수발생재강저층복합여강고층복산상중질적구역。
Using surface and high observational data, satellite TBB, Doppler radar data and GFS(0.5°x 0.5°) reanalyzed data, etc., the m esoscale structure and maintenance mechanism of a short duration warm rainstorm, occurred in the northwest of Jiangxi on June 10, 2011, was analyzed. The results showed that: 1) this process occurred in the favorable weather system configuration on the south side of the Meiyu front. Boundary layer jet and low-level jet provided sufficient water vapor, and enhanced the low-level thermal instability. Shunt area at high level led to the development of atmospheric dynamical instability. Coupling of high and low-level jets provided the necessary instability mechanism for MCS maintenance. The low-level thermal instability and high-level symmetric instability induced the strong convective precipitation. 2) The uplift of surface mesoscale convergence line, non frontal baroclinic zone and energy front provided enough start-up mechanism for the MCS development. 3) The Low level abundant vapor transport, the stratification instability and the surface sustained and strong mesoscale lifting made the multiple thunderstorm cells continuously spread in the northwestern Jiangxi. This formed “train effect” caused strong and concentrated rainfall. 4) Under moisture and unstable conditions, the short duration warm rainstorm occurred in low-level strong convergence and upper-level strong divergence overlap region.