交通运输系统工程与信息
交通運輸繫統工程與信息
교통운수계통공정여신식
Journal of Transportation Systems Engineering and Information Technology
2015年
5期
67-73,95
,共8页
邱小平%刘亚龙%马丽娜%杨达
邱小平%劉亞龍%馬麗娜%楊達
구소평%류아룡%마려나%양체
公路运输%贝叶斯网络%机器学习%车辆换道%特征离散
公路運輸%貝葉斯網絡%機器學習%車輛換道%特徵離散
공로운수%패협사망락%궤기학습%차량환도%특정리산
highway transportation%Bayesian networks%machine learning%lane change%characteristic discretization
车辆换道行为是微观交通流中最基本的驾驶行为之一,研究车辆换道行为可以提高车辆换道模型的仿真精度和减少由不合适的车辆换道行为引发的交通事故.当前车辆换道模型大多是基于驾驶员的决策思维方式建立的决策模型,这类模型的缺点是很难捕捉到驾驶员在决策过程中一些潜在决策模式和考虑的影响因素.鉴于此,本文引入了一种典型的人工智能方法——贝叶斯网络,建立了一个全新的车辆换道模型,试图通过机器学习的途径来提高车辆换道模型的精度.采用了分段离散化的方法对数据进行预处理,然后使用处理后的数据对贝叶斯网络的结构和参数进行学习,并分别建立了与两种贝叶斯网络结构相对应的车辆换道模型,最后对建立的模型分别进行验证.模型的验证结果表明,建立的基于贝叶斯网络的车辆换道模型对换道行为的识别率可以达到88%以上.此模型还可进一步应用到驾驶员辅助系统的开发中.
車輛換道行為是微觀交通流中最基本的駕駛行為之一,研究車輛換道行為可以提高車輛換道模型的倣真精度和減少由不閤適的車輛換道行為引髮的交通事故.噹前車輛換道模型大多是基于駕駛員的決策思維方式建立的決策模型,這類模型的缺點是很難捕捉到駕駛員在決策過程中一些潛在決策模式和攷慮的影響因素.鑒于此,本文引入瞭一種典型的人工智能方法——貝葉斯網絡,建立瞭一箇全新的車輛換道模型,試圖通過機器學習的途徑來提高車輛換道模型的精度.採用瞭分段離散化的方法對數據進行預處理,然後使用處理後的數據對貝葉斯網絡的結構和參數進行學習,併分彆建立瞭與兩種貝葉斯網絡結構相對應的車輛換道模型,最後對建立的模型分彆進行驗證.模型的驗證結果錶明,建立的基于貝葉斯網絡的車輛換道模型對換道行為的識彆率可以達到88%以上.此模型還可進一步應用到駕駛員輔助繫統的開髮中.
차량환도행위시미관교통류중최기본적가사행위지일,연구차량환도행위가이제고차량환도모형적방진정도화감소유불합괄적차량환도행위인발적교통사고.당전차량환도모형대다시기우가사원적결책사유방식건립적결책모형,저류모형적결점시흔난포착도가사원재결책과정중일사잠재결책모식화고필적영향인소.감우차,본문인입료일충전형적인공지능방법——패협사망락,건립료일개전신적차량환도모형,시도통과궤기학습적도경래제고차량환도모형적정도.채용료분단리산화적방법대수거진행예처리,연후사용처리후적수거대패협사망락적결구화삼수진행학습,병분별건립료여량충패협사망락결구상대응적차량환도모형,최후대건립적모형분별진행험증.모형적험증결과표명,건립적기우패협사망락적차량환도모형대환도행위적식별솔가이체도88%이상.차모형환가진일보응용도가사원보조계통적개발중.
Lane change behavior is one of the most foundational driving behaviors in microscopic traffic flow. Researching the lane change behavior contributes to improving the simulation accuracy of lane change models and reducing traffic accidents caused by improper lane change behavior. The current lane change model is the decision model mostly based on the way of driver's thinking. The shortcoming of current models is difficult to catch certain potential decision-making model and influencing factors in the driver's decision-making process. In view of this, this paper introduces a typical artificial intelligence method, Bayesian networks, to establish a new lane change model, and tries to improve the accuracy of the lane change model by machine learning. It uses a segmented discrete method to preprocess vehicle trajectory measurement data, and uses the processed data to training and verification this model. The verification results show that, this model's recognition rate to lane change behavior can reach more than 88%. In addition, this model can be further applied to the development of a driver assistance system.