科学技术与工程
科學技術與工程
과학기술여공정
Science Technology and Engineering
2015年
29期
62-66
,共5页
PCAdaboost%主成分%阈值搜索%降维
PCAdaboost%主成分%閾值搜索%降維
PCAdaboost%주성분%역치수색%강유
PCAdaboost%principal components%threshold search%dimension reduction
针对传统的Adaboost算法可能出现在应对较大训练数据集训练时间过长的问题,提出了一种改进的Adaboost 算法———PCAdaboost。改进算法利用PCA方法的降维技术,对训练样本特征提取主要成分,去除输入样本特征间的相关性,提高分类精度。同时,从样本阈值搜索角度考虑了特征值等分和特征值空间维数,给出了阈值快速搜索方法。实验结果表明,该算法在UCI数据集上取得较好的效果。
針對傳統的Adaboost算法可能齣現在應對較大訓練數據集訓練時間過長的問題,提齣瞭一種改進的Adaboost 算法———PCAdaboost。改進算法利用PCA方法的降維技術,對訓練樣本特徵提取主要成分,去除輸入樣本特徵間的相關性,提高分類精度。同時,從樣本閾值搜索角度攷慮瞭特徵值等分和特徵值空間維數,給齣瞭閾值快速搜索方法。實驗結果錶明,該算法在UCI數據集上取得較好的效果。
침대전통적Adaboost산법가능출현재응대교대훈련수거집훈련시간과장적문제,제출료일충개진적Adaboost 산법———PCAdaboost。개진산법이용PCA방법적강유기술,대훈련양본특정제취주요성분,거제수입양본특정간적상관성,제고분류정도。동시,종양본역치수색각도고필료특정치등분화특정치공간유수,급출료역치쾌속수색방법。실험결과표명,해산법재UCI수거집상취득교호적효과。
In view of the problem of the long training time in dealing with large training dataset in the training process of the traditional Adaboost algorithm , an improved methods was introduced to these problem .Improved al-gorithm using PCA dimension reduction technique , extracts main ingredients for the training sample feature , re-moves the correlation between the input sample characteristics , and improves the classification accuracy .At the same time , from the angle of sample threshold search takes into consideration the divisions and eigenvalue space di -mension, threshold fast search method is presented .Experimental results show that the algorithm to achieve better results on UCI datasets .