电力系统保护与控制
電力繫統保護與控製
전력계통보호여공제
Power System Protection and Control
2015年
19期
66-71
,共6页
程加堂%段志梅%艾莉%熊燕
程加堂%段誌梅%艾莉%熊燕
정가당%단지매%애리%웅연
水电机组%振动%故障诊断%量子粒子群优化BP神经网络%改进D-S证据理论
水電機組%振動%故障診斷%量子粒子群優化BP神經網絡%改進D-S證據理論
수전궤조%진동%고장진단%양자입자군우화BP신경망락%개진D-S증거이론
hydroelectric generating unit%vibration%fault diagnosis%quantum particle swarm optimized BP neural network (QPSO-BP)%modified D-S evidence theory
为提高水电机组振动故障诊断的准确性,提出了一种基于改进D-S证据理论融合量子粒子群优化BP神经网络(QPSO-BP)的诊断方法.根据水电机组常见的振动故障类型,采用3个惯性权值随机调整的QPSO-BP网络分别对其进行初级诊断,并作为独立证据体应用于D-S理论的合成之中,实现了基本概率赋值的客观化.针对标准D-S无法合成高度冲突证据的缺陷,通过计算权值矩阵对其进行修正.实例分析表明,和3个初级诊断模型及标准D-S合成法相比,所提方法可以有效识别机组的振动故障,具有较高的诊断准确率.
為提高水電機組振動故障診斷的準確性,提齣瞭一種基于改進D-S證據理論融閤量子粒子群優化BP神經網絡(QPSO-BP)的診斷方法.根據水電機組常見的振動故障類型,採用3箇慣性權值隨機調整的QPSO-BP網絡分彆對其進行初級診斷,併作為獨立證據體應用于D-S理論的閤成之中,實現瞭基本概率賦值的客觀化.針對標準D-S無法閤成高度遲突證據的缺陷,通過計算權值矩陣對其進行脩正.實例分析錶明,和3箇初級診斷模型及標準D-S閤成法相比,所提方法可以有效識彆機組的振動故障,具有較高的診斷準確率.
위제고수전궤조진동고장진단적준학성,제출료일충기우개진D-S증거이론융합양자입자군우화BP신경망락(QPSO-BP)적진단방법.근거수전궤조상견적진동고장류형,채용3개관성권치수궤조정적QPSO-BP망락분별대기진행초급진단,병작위독립증거체응용우D-S이론적합성지중,실현료기본개솔부치적객관화.침대표준D-S무법합성고도충돌증거적결함,통과계산권치구진대기진행수정.실례분석표명,화3개초급진단모형급표준D-S합성법상비,소제방법가이유효식별궤조적진동고장,구유교고적진단준학솔.
In order to improve the accuracy of vibration fault diagnosis for hydroelectric generating unit, a method is proposed based on quantum particle swarm optimized BP neural network (QPSO-BP) which is fused by modified D-S evidence theory. According to the common vibration fault types, three QPSO-BP networks with inertia weight being adjusted randomly are used as its primary diagnosis models, then the independent bodies of evidence are applied to the synthesis of D-S theory, and the basic probability assignment is realized objectively. In view of the defects that standard D-S can not synthesize high conflict evidence, the weight matrix is calculated to improve it. Example analysis shows that the proposed method can effectively identify vibration fault of the unit, and has a high diagnostic accuracy compared with three primary diagnostic model and standard D-S theory.