施工技术
施工技術
시공기술
Construction Technology
2015年
18期
81-85
,共5页
项目管理%大型网络计划%蒙特卡罗方法%分区优化%循环次数
項目管理%大型網絡計劃%矇特卡囉方法%分區優化%循環次數
항목관리%대형망락계화%몽특잡라방법%분구우화%순배차수
project management%large network plan%Monte Carlo method%partition optimization%cycle times
大型网络计划工期固定-资源均衡优化是进度计划制定者最具挑战性的任务之一。大型网络计划工期固定-资源均衡优化是工作数较多(例如超过50个)的网络计划满足工期固定的情况下的资源均衡。提出了基于蒙特卡罗方法的分区优化求解大型网络计划工期固定-资源均衡优化问题,用工作最早开始时间和最迟完成时间、以分区内可能解的组合数小于微机有效处理循环次数为限,把大型网络计划的工作划分到足够多的分区,以减少分区内各工作满足某一条件的可能解组合个数,减少在全工期时段上满足工期固定和资源均衡的可能解组合个数,从而便于微机用蒙特卡罗方法、以有限的循环次数和较高的优化解使最优解的概率得到大型网络计划的工期固定-资源均衡优化的解。基于蒙特卡罗方法的分区优化求解工期固定-资源均衡优化,通过了具有61个工作的大型网络计划工期固定-资源均衡优化算例验证。
大型網絡計劃工期固定-資源均衡優化是進度計劃製定者最具挑戰性的任務之一。大型網絡計劃工期固定-資源均衡優化是工作數較多(例如超過50箇)的網絡計劃滿足工期固定的情況下的資源均衡。提齣瞭基于矇特卡囉方法的分區優化求解大型網絡計劃工期固定-資源均衡優化問題,用工作最早開始時間和最遲完成時間、以分區內可能解的組閤數小于微機有效處理循環次數為限,把大型網絡計劃的工作劃分到足夠多的分區,以減少分區內各工作滿足某一條件的可能解組閤箇數,減少在全工期時段上滿足工期固定和資源均衡的可能解組閤箇數,從而便于微機用矇特卡囉方法、以有限的循環次數和較高的優化解使最優解的概率得到大型網絡計劃的工期固定-資源均衡優化的解。基于矇特卡囉方法的分區優化求解工期固定-資源均衡優化,通過瞭具有61箇工作的大型網絡計劃工期固定-資源均衡優化算例驗證。
대형망락계화공기고정-자원균형우화시진도계화제정자최구도전성적임무지일。대형망락계화공기고정-자원균형우화시공작수교다(례여초과50개)적망락계화만족공기고정적정황하적자원균형。제출료기우몽특잡라방법적분구우화구해대형망락계화공기고정-자원균형우화문제,용공작최조개시시간화최지완성시간、이분구내가능해적조합수소우미궤유효처리순배차수위한,파대형망락계화적공작화분도족구다적분구,이감소분구내각공작만족모일조건적가능해조합개수,감소재전공기시단상만족공기고정화자원균형적가능해조합개수,종이편우미궤용몽특잡라방법、이유한적순배차수화교고적우화해사최우해적개솔득도대형망락계화적공기고정-자원균형우화적해。기우몽특잡라방법적분구우화구해공기고정-자원균형우화,통과료구유61개공작적대형망락계화공기고정-자원균형우화산례험증。
Resource-leveling optimization with fixed duration for a large network plan is one of the most challenging tasks of construction project planners. Resource-leveling optimization with fixed duration for a large network plan whose works number is more ( such as more than 50 ) requires minimization of total project duration while considering issues related to optimal resource leveling. The partition optimization of resource-leveling optimization with over a fixed duration for large network plans based on the Monte Carlo method is put forward. With a limitation on the number of possible solutions to the partition, the work of a large network plan is partitioned according to the earliest start time and the latest finish time. Partition optimization is used to reduce the searching scope of possible solutions over the time period of full duration. Possible solutions are selected at random using the Monte Carlo method. Using resource range as the criterion of partition optimization and using resource range and fixed duration as criteria of global optimization, the conditions of limited cycles of the microcomputer are met. It is highly likely that the optimized solution is the optimal solution. The results of numerical examples prove that the optimization effect is evident. The partition optimization of resource-leveling optimization with a fixed duration for a large network plan based on the Monte Carlo method is verified by a optimization example of a large network plan whose works number is 61 .