电脑与信息技术
電腦與信息技術
전뇌여신식기술
Computer and Information Technology
2015年
5期
12-14,61
,共4页
meanshift跟踪%直方图显著性%相似性度量%背景和目标更新
meanshift跟蹤%直方圖顯著性%相似性度量%揹景和目標更新
meanshift근종%직방도현저성%상사성도량%배경화목표경신
meanshift tracking%significant of histogram%similarity measurement%background and target update
针对传统meanshift跟踪算法不能有效消除目标内包含的背景信息、 不能自适应连续视频序列中背景的明显变化,以及不能解决光照变化带来的目标颜色特征信息变化的问题.文章提出在计算目标和背景模型直方图时,通过比较两者特征直方图的bin值,得到目标特征显著性大小,并将其代入传统的相似性度量中,同时加入一种简单的背景和目标更新算法,在有效的提高目标与背景区分度的同时,减小了因光照导致的目标直方图模型表达的偏差. 实验结果表明,该算法能在不增加计算复杂度的前提下,拥有更高的定位精度,能够有效地消除背景对目标跟踪的干扰,同时能够适应背景的缓慢变化,对光照变化也具有一定的鲁棒性.
針對傳統meanshift跟蹤算法不能有效消除目標內包含的揹景信息、 不能自適應連續視頻序列中揹景的明顯變化,以及不能解決光照變化帶來的目標顏色特徵信息變化的問題.文章提齣在計算目標和揹景模型直方圖時,通過比較兩者特徵直方圖的bin值,得到目標特徵顯著性大小,併將其代入傳統的相似性度量中,同時加入一種簡單的揹景和目標更新算法,在有效的提高目標與揹景區分度的同時,減小瞭因光照導緻的目標直方圖模型錶達的偏差. 實驗結果錶明,該算法能在不增加計算複雜度的前提下,擁有更高的定位精度,能夠有效地消除揹景對目標跟蹤的榦擾,同時能夠適應揹景的緩慢變化,對光照變化也具有一定的魯棒性.
침대전통meanshift근종산법불능유효소제목표내포함적배경신식、 불능자괄응련속시빈서렬중배경적명현변화,이급불능해결광조변화대래적목표안색특정신식변화적문제.문장제출재계산목표화배경모형직방도시,통과비교량자특정직방도적bin치,득도목표특정현저성대소,병장기대입전통적상사성도량중,동시가입일충간단적배경화목표경신산법,재유효적제고목표여배경구분도적동시,감소료인광조도치적목표직방도모형표체적편차. 실험결과표명,해산법능재불증가계산복잡도적전제하,옹유경고적정위정도,능구유효지소제배경대목표근종적간우,동시능구괄응배경적완만변화,대광조변화야구유일정적로봉성.
Considering that the traditional meanshift tracking algorithm can not effectively eliminate the background information, can not self-adaptive the obvious changes of background in video sequences, and can not solve the problem of the target color characteristic information changes due to the illumination variation. This paper put forward a method that by comparing the feature histogram bin value between target and the background feature model during their computing, getting the characteristics of significant size of the target, and integrating it into the similarity of the traditional metrics, while adding a simple updating method of the background and the target. Effectively improving the difference of the target and the background area, reducing the deviation of target histogram model expression due to the changes of light. The experimental results show that, without increasing the complexity of calculating,the algorithm gets higher positioning accuracy, it can effectively eliminate the background interference of target tracking, and can adapt to slow changes in the background, certain robustness has got due to the change of light.