仪表技术与传感器
儀錶技術與傳感器
의표기술여전감기
Instrument Technique and Sensor
2015年
9期
56-59
,共4页
状态监测%信息融合%图像可听化%主成分分析%神经网络
狀態鑑測%信息融閤%圖像可聽化%主成分分析%神經網絡
상태감측%신식융합%도상가은화%주성분분석%신경망락
statu monitoring%information fusion%image auralization%principal component analysis%neural network
围绕机电设备状态监测的需求,设计了基于视听信息融合的状态监测系统。分别利用图像可听化技术、数据归一化和主成分分析得到了较低维数的同质特征数据。以BP 神经网络为融合模型,对所得特征数据进行识别与融合,进而得到对机电设备运行状态的决策输出。实验结果表明,在外界噪声环境下,融合视听信息的状态监测系统能维持较高的正确识别率,同时以神经网络为融合模型保证了系统的稳定性和鲁棒性。
圍繞機電設備狀態鑑測的需求,設計瞭基于視聽信息融閤的狀態鑑測繫統。分彆利用圖像可聽化技術、數據歸一化和主成分分析得到瞭較低維數的同質特徵數據。以BP 神經網絡為融閤模型,對所得特徵數據進行識彆與融閤,進而得到對機電設備運行狀態的決策輸齣。實驗結果錶明,在外界譟聲環境下,融閤視聽信息的狀態鑑測繫統能維持較高的正確識彆率,同時以神經網絡為融閤模型保證瞭繫統的穩定性和魯棒性。
위요궤전설비상태감측적수구,설계료기우시은신식융합적상태감측계통。분별이용도상가은화기술、수거귀일화화주성분분석득도료교저유수적동질특정수거。이BP 신경망락위융합모형,대소득특정수거진행식별여융합,진이득도대궤전설비운행상태적결책수출。실험결과표명,재외계조성배경하,융합시은신식적상태감측계통능유지교고적정학식별솔,동시이신경망락위융합모형보증료계통적은정성화로봉성。
Focused on the demand of mechatronical device status monitoring , a surveiliance system based on audio-visual in-formation fusion was designed .The characteristic data with the same type and low dimensionality was obtained through the methods of image auralization , data normalization and principal component analysis .Based on BP neural network model , the charateristic data was recognised and fused , and the decisions of monitering of electromechanical device were obtain .The experimental results show that the correct recognition rate of monitoring based on audio-visual fusion is maintained at a high level under noisy environ-ment, meanwhile the stability and the robustness of the system was guaranteed by the neural network model .