仪表技术与传感器
儀錶技術與傳感器
의표기술여전감기
Instrument Technique and Sensor
2015年
9期
11-13,27
,共4页
王冰%张震宇%刘慧%张洪泉
王冰%張震宇%劉慧%張洪泉
왕빙%장진우%류혜%장홍천
相关向量机%故障恢复%小生境粒子群算法%参数优化
相關嚮量機%故障恢複%小生境粒子群算法%參數優化
상관향량궤%고장회복%소생경입자군산법%삼수우화
relevance vector machine%fault recovery%niche particle swarm optimization%parameter optimizing
在相关向量机回归模型的基础上,提出了一种新的氢气传感器故障数据恢复方法。利用小生境粒子群算法的“共享机制”对相关向量回归的核参数进行了优化,使其能快速准确地找到全局最优参数。用优化并训练后的回归模型对发生故障后的数据进行预测,实现故障恢复。将本文所用方法与其他较成熟的方法进行了比较,实验结果表明本方法在恢复准确度和鲁棒性方面均优于传统方法。数据恢复相对误差在±2.8%以内。
在相關嚮量機迴歸模型的基礎上,提齣瞭一種新的氫氣傳感器故障數據恢複方法。利用小生境粒子群算法的“共享機製”對相關嚮量迴歸的覈參數進行瞭優化,使其能快速準確地找到全跼最優參數。用優化併訓練後的迴歸模型對髮生故障後的數據進行預測,實現故障恢複。將本文所用方法與其他較成熟的方法進行瞭比較,實驗結果錶明本方法在恢複準確度和魯棒性方麵均優于傳統方法。數據恢複相對誤差在±2.8%以內。
재상관향량궤회귀모형적기출상,제출료일충신적경기전감기고장수거회복방법。이용소생경입자군산법적“공향궤제”대상관향량회귀적핵삼수진행료우화,사기능쾌속준학지조도전국최우삼수。용우화병훈련후적회귀모형대발생고장후적수거진행예측,실현고장회복。장본문소용방법여기타교성숙적방법진행료비교,실험결과표명본방법재회복준학도화로봉성방면균우우전통방법。수거회복상대오차재±2.8%이내。
Based on relevance vector machine regression model ,a new fault data recovery method of hydrogen sensor was pro-posed in this paper .The “sharing mechanism” of niche particle swarm optimization algorithm was used to optimize kernel parame-ter of RVM,which can make it to find the global optimal parameter fast and exactly .The fault data were prognosed by using the re-gression model of optimized and trained to realize the fault recovery .The proposed method was compared with other mature algo-rithms ,the results show that the proposed method is superior to the traditional ones in recovery accuracy and robustness .The relative error of fault recovery is within ±2.8%.