仪表技术与传感器
儀錶技術與傳感器
의표기술여전감기
Instrument Technique and Sensor
2015年
9期
91-94,110
,共5页
聚类分析%人工鱼群算法%最小二乘支持向量%在线递推%软测量
聚類分析%人工魚群算法%最小二乘支持嚮量%在線遞推%軟測量
취류분석%인공어군산법%최소이승지지향량%재선체추%연측량
cluster analysis%artificial fish algorithm%least squares support vector%online recursive%soft sensor
针对流程工业存在多变量、非线性和数据动态性等问题,提出一种改进递推最小二乘支持向量机。该算法首先利用K均值算法(Kmeans)将训练样本分类,然后针对各聚类用人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)对最小二乘支持向量机参数进行优化,以避免人为选择最小二乘支持向量机参数的盲目性,最后在各聚类基础上建立相应在线递推最小二乘支持向量机模型。在加氢裂化反应过程蒸馏塔航煤干点的软测量建模研究中,表明所提出算法的有效性和优越性。
針對流程工業存在多變量、非線性和數據動態性等問題,提齣一種改進遞推最小二乘支持嚮量機。該算法首先利用K均值算法(Kmeans)將訓練樣本分類,然後針對各聚類用人工魚群算法(Artificial Fish Swarm Algorithm,AFSA)對最小二乘支持嚮量機參數進行優化,以避免人為選擇最小二乘支持嚮量機參數的盲目性,最後在各聚類基礎上建立相應在線遞推最小二乘支持嚮量機模型。在加氫裂化反應過程蒸餾塔航煤榦點的軟測量建模研究中,錶明所提齣算法的有效性和優越性。
침대류정공업존재다변량、비선성화수거동태성등문제,제출일충개진체추최소이승지지향량궤。해산법수선이용K균치산법(Kmeans)장훈련양본분류,연후침대각취류용인공어군산법(Artificial Fish Swarm Algorithm,AFSA)대최소이승지지향량궤삼수진행우화,이피면인위선택최소이승지지향량궤삼수적맹목성,최후재각취류기출상건립상응재선체추최소이승지지향량궤모형。재가경열화반응과정증류탑항매간점적연측량건모연구중,표명소제출산법적유효성화우월성。
Considering the problem of multivariable , nonlinear and dynamic date in industry process , an improved recursive least squares support vector machine was proposed .First, the algorithm used Kmeans to divide the training sample into several clusters.Then, for each cluster, this paper separately used artificial fish algorithm to calculate the optimal parameters of least squares support vector machine , avoiding the blindness of selecting the parameters of least squares support vector machine .Final-ly, online recursive least squares support vector machine model in each cluster was set up .In distillation tower of hydro cracking reaction, the soft measurement modeling of Jet fuel obtained highly precise and effective prediction .