武汉工程大学学报
武漢工程大學學報
무한공정대학학보
Journal of Wuhan Institute of Technology
2015年
10期
33-39
,共7页
冯先成%李寒%周密%郭耀飞
馮先成%李寒%週密%郭耀飛
풍선성%리한%주밀%곽요비
智慧城市%构造识别函数%前馈神经网络%空巢老人
智慧城市%構造識彆函數%前饋神經網絡%空巢老人
지혜성시%구조식별함수%전궤신경망락%공소노인
intelligent city%recognition function%feedforward neural networks%empty-nest elders
随着社会老龄化进程的加快,空巢老人的数量呈上升趋势,老龄化成为一个不容忽视的社会问题.通过对空巢老人手机用户的识别的数据分析,提出识别信息完整的用户与信息缺失的用户的两个模型. 基于正常的用户信息表,空巢老人及其子女的数量可以准确识别,当用户的信息不够充足时,采用前馈神经网络算法,结果显示其空巢老人的识别率可以达到73.3%. 通过识别模型,及时更新空巢老人的数据,为统计局等政府部门提供了简单有效的数据分析,有助于建设智慧城市,促进社会和谐.
隨著社會老齡化進程的加快,空巢老人的數量呈上升趨勢,老齡化成為一箇不容忽視的社會問題.通過對空巢老人手機用戶的識彆的數據分析,提齣識彆信息完整的用戶與信息缺失的用戶的兩箇模型. 基于正常的用戶信息錶,空巢老人及其子女的數量可以準確識彆,噹用戶的信息不夠充足時,採用前饋神經網絡算法,結果顯示其空巢老人的識彆率可以達到73.3%. 通過識彆模型,及時更新空巢老人的數據,為統計跼等政府部門提供瞭簡單有效的數據分析,有助于建設智慧城市,促進社會和諧.
수착사회노령화진정적가쾌,공소노인적수량정상승추세,노령화성위일개불용홀시적사회문제.통과대공소노인수궤용호적식별적수거분석,제출식별신식완정적용호여신식결실적용호적량개모형. 기우정상적용호신식표,공소노인급기자녀적수량가이준학식별,당용호적신식불구충족시,채용전궤신경망락산법,결과현시기공소노인적식별솔가이체도73.3%. 통과식별모형,급시경신공소노인적수거,위통계국등정부부문제공료간단유효적수거분석,유조우건설지혜성시,촉진사회화해.
Aimed at the social problems associated with empty-nest elders, two recognition models of empty-nest elders were presented based on the analysis of calling list and user information table. The empty-nest el-ders and their children' number can be identified by recognition function based on the normal user informa-tion table. Meanwhile the recognition accuracy rate can reach 73.3% using feedforward neural network algo-rithm when the information of a user is not sufficient. Moreover the database empty-nest elders can be timely updated by the recognition models, which can provide effective data for statistics bureau and other govern-ment departments. It is beneficial to the development of intelligent city and harmonious society.