振动与冲击
振動與遲擊
진동여충격
Journal of Vibration and Shock
2015年
22期
74-81
,共8页
田佳彬%饶柱石%塔娜%许立富%黄新生
田佳彬%饒柱石%塔娜%許立富%黃新生
전가빈%요주석%탑나%허립부%황신생
粘弹性%动态能耗%耳蜗%动力学建模%多场耦合%有限元分析
粘彈性%動態能耗%耳蝸%動力學建模%多場耦閤%有限元分析
점탄성%동태능모%이와%동역학건모%다장우합%유한원분석
viscoelasticity%dynamic energy dissipation%cochlea%dynamic modeling%multiphysics coupling%finite element analysis
为分析中耳软组织粘弹性材料特性对人耳系统动力学特性影响,建立包括外耳道、中耳及耳蜗的整耳有限元模型。外耳道及中耳模型用微CT扫描与逆向成型技术建立,耳蜗采用双腔导管形式简化模型。基于该模型,中耳部分软组织材料属性采用线性粘弹性,以表征动态分析中能量损耗。在外耳道施加90 dB SPL声压模拟声激励,并在计算中考虑外耳道气体、中耳固体及耳蜗流体多场耦合作用。中耳结构响应包括鼓膜脐部与镫骨底板位移及镫骨底板速度传递函数,耳蜗流体压力响应用于计算中耳压力增益、耳蜗输入声阻抗及压力逆向传递函数。结果表明,考虑粘弹性后,人耳系统动态响应参数较线弹性有一定程度改善,尤其在高频段提升较明显,与实验测量数据匹配效果更好。
為分析中耳軟組織粘彈性材料特性對人耳繫統動力學特性影響,建立包括外耳道、中耳及耳蝸的整耳有限元模型。外耳道及中耳模型用微CT掃描與逆嚮成型技術建立,耳蝸採用雙腔導管形式簡化模型。基于該模型,中耳部分軟組織材料屬性採用線性粘彈性,以錶徵動態分析中能量損耗。在外耳道施加90 dB SPL聲壓模擬聲激勵,併在計算中攷慮外耳道氣體、中耳固體及耳蝸流體多場耦閤作用。中耳結構響應包括鼓膜臍部與鐙骨底闆位移及鐙骨底闆速度傳遞函數,耳蝸流體壓力響應用于計算中耳壓力增益、耳蝸輸入聲阻抗及壓力逆嚮傳遞函數。結果錶明,攷慮粘彈性後,人耳繫統動態響應參數較線彈性有一定程度改善,尤其在高頻段提升較明顯,與實驗測量數據匹配效果更好。
위분석중이연조직점탄성재료특성대인이계통동역학특성영향,건립포괄외이도、중이급이와적정이유한원모형。외이도급중이모형용미CT소묘여역향성형기술건립,이와채용쌍강도관형식간화모형。기우해모형,중이부분연조직재료속성채용선성점탄성,이표정동태분석중능량손모。재외이도시가90 dB SPL성압모의성격려,병재계산중고필외이도기체、중이고체급이와류체다장우합작용。중이결구향응포괄고막제부여등골저판위이급등골저판속도전체함수,이와류체압력향응용우계산중이압력증익、이와수입성조항급압력역향전체함수。결과표명,고필점탄성후,인이계통동태향응삼수교선탄성유일정정도개선,우기재고빈단제승교명현,여실험측량수거필배효과경호。
Toanalyzetheeffectsofviscoelasticpropertiesofmiddleearsofttissuesonthedynamiccharacteristicsof human ear system,a finite element (FE )model of the human ear consisting of the external ear canal,middle ear and cochlea was developed.The geometric configuration of the external ear canal and middle ear was constructed via micro-CT scanning and reverse engineering technology,and the cochlea was simplified as an uncoiled,two-chambered and fluid-filled duct.The viscoelastic material effect was introduced into the behaviors of middle ear soft tissues to represent the energy dissipation in dynamic analysis.A multiphysics coupled analysis was conducted on the model in which the coupling effects among the air in the ear canal,the fluid in the cochlea and the middle ear structures were concerned.Then a sound pressure of 90 dB SPL was applied on the ear canal to simulate the sound stimulus on normal human ear.Middle ear structural responses such as movements of the tympanic membrane and stapes footplate in response to the sound stimulus were derived by this model.Meanwhile,based on calculating the pressure of the fluid in the cochlea,the sound pressure gain across the middle ear,the cochlear input impedance and the reverse pressure transfer function of cochlea were also obtained.The results show that taking into account the viscoelastic properties of middle ear soft tissues can improve the dynamic responses of the human ear system as compared with the results of a linear elastic model,especially at the high-frequency range.The better agreements between the model results and the experimental data in the literature illustrate the necessity of considering viscoelasticity for dynamic modeling of human ear.