船舶与海洋工程学报(英文版)
船舶與海洋工程學報(英文版)
선박여해양공정학보(영문판)
Journal of Marine Science and Application
2015年
4期
376-388
,共13页
refractive groin%right-angle groin%recirculation area%turbulence modeling%flow characteristic%baroclinic conditions%barotropic conditions
Groins are employed to prevent nearshore areas from erosion and to control the direction of flow. However, the groin structure and its associated flow characteristics are the main causes of local erosion. In this study, we investigate the flow patterns around refractive and right-angle groins. In particular, we analytically compare the flow characteristics around a refractive groin and study the degree of accuracy that can be achieved by using a right-angle groin of various projected lengths. To compare the flow characteristics, we replaced the right-angle groin with an approximation of a refractive groin. This replacement had the least effect on the maximum velocity of flow in the channel. Moreover, we investigated the distribution of the density variables of temperature and salinity, and their effects on the flow characteristics around the right-angle groin. A comparison of the flow analysis results in baroclinic and barotropic conditions reveals that the flow characteristic values are very similar for both the refractive and right-angle groins. The geometry of the groin, i.e., right-angle or refractive, has little effect on the maximum speed to relative average speed. Apart from the angular separation, the arm length of the groin in downstream refractive groins has less effect on other flow characteristics than do upstream refractive groins. We also correlated a number of non-dimensional variables with respect to various flow characteristics and groin geometry. These comparisons indicate that the correlation between the thalweg height and width of the channel and groin arm’s length to projection length have been approximated using linear and nonlinear formulas regardless of inner velocity in the subcritical flow.