西北工业大学学报
西北工業大學學報
서북공업대학학보
Journal of Northwestern Polytechnical University
2015年
5期
867-873
,共7页
SAR图像%目标检测%多尺度%尺度不变特征变换(SIFT)
SAR圖像%目標檢測%多呎度%呎度不變特徵變換(SIFT)
SAR도상%목표검측%다척도%척도불변특정변환(SIFT)
algorithms%feature extraction%mathematical operators%
optimization%principal component analysis%redundancy%synthetic
aperture radar%statistics%support vector machines%target
tracking%vector%multi?scale%SAR ( synthetic aperture radar )
images%SIFT ( sca
提出一种用于SAR图像目标检测的多尺度SIFT特征提取及降维方法. 针对在单一尺度下无法完整描述SAR目标的问题,采用高斯尺度空间和多组种子点的方式实现多尺度SIFT特征描述,并对同一尺度和不同尺度间的描述冗余和结构冗余分别采取稀疏编码和特征统计的降维方式实现去冗余处理. 在多尺度因子和尺度层数的选择上,通过定量计算选取最优描述参数,使得代表目标特征的向量既包括目标整体轮廓信息又包含图像细节描述. 与传统双参数恒虚警率、单尺度SIFT特征、多尺度SIFT?PCA等方法进行对比测试,验证了该方法的有效性.
提齣一種用于SAR圖像目標檢測的多呎度SIFT特徵提取及降維方法. 針對在單一呎度下無法完整描述SAR目標的問題,採用高斯呎度空間和多組種子點的方式實現多呎度SIFT特徵描述,併對同一呎度和不同呎度間的描述冗餘和結構冗餘分彆採取稀疏編碼和特徵統計的降維方式實現去冗餘處理. 在多呎度因子和呎度層數的選擇上,通過定量計算選取最優描述參數,使得代錶目標特徵的嚮量既包括目標整體輪廓信息又包含圖像細節描述. 與傳統雙參數恆虛警率、單呎度SIFT特徵、多呎度SIFT?PCA等方法進行對比測試,驗證瞭該方法的有效性.
제출일충용우SAR도상목표검측적다척도SIFT특정제취급강유방법. 침대재단일척도하무법완정묘술SAR목표적문제,채용고사척도공간화다조충자점적방식실현다척도SIFT특정묘술,병대동일척도화불동척도간적묘술용여화결구용여분별채취희소편마화특정통계적강유방식실현거용여처리. 재다척도인자화척도층수적선택상,통과정량계산선취최우묘술삼수,사득대표목표특정적향량기포괄목표정체륜곽신식우포함도상세절묘술. 여전통쌍삼수항허경솔、단척도SIFT특정、다척도SIFT?PCA등방법진행대비측시,험증료해방법적유효성.
A detection method for SAR targets based on extraction and dimensionality reduction of multi?scale SIFT features is proposed. Aiming at the problem that SAR target features cannot be completely described in single scale, we put Gaussian scale space and multi?group of seed points into use to achieve the extraction of multi?scale SIFT features. Meanwhile, there are description redundancies and structural redundancies in the same and different scales, so the method of sparse coding and features statistics is introduced to reduce redundancies and dimensionali?ty for feature vectors. Through quantitative analysis, the most optimal parameters of multi?scale factor and number are fixed, this makes the target features contain both the overall target contour information and the image details. Comparison with traditional target detectors, such as CFAR, SIFT features and multi?scale SIFT?PCA features etc, is performed in detail. The experimental results and their analysis show preliminarily the superiorities of the propos?al.