化工学报
化工學報
화공학보
CIESC Jorunal
2015年
11期
4689-4695
,共7页
复合材料%制备%纳米材料%多巴胺%多壁碳纳米管%壳聚糖
複閤材料%製備%納米材料%多巴胺%多壁碳納米管%殼聚糖
복합재료%제비%납미재료%다파알%다벽탄납미관%각취당
composites%preparation%nanomaterials%dopamine%MWCNTs%chitosan
通过控制溶液的pH,在酸性条件下制备了单层多巴胺改性的多壁碳纳米管,然后以戊二醛作为反应中间桥梁,共价接枝制备得到碳纳米管/壳聚糖复合材料。通过透射电子显微镜(TEM)、红外光谱(FTIR)和热重分析法(TGA)对复合材料的结构和性能进行表征,结果表明碳纳米管的管壁外面和管端都被均匀包覆起来,包覆层厚度在6 nm左右;采用多巴胺单层膜包覆碳纳米管,达到了减小对碳纳米管结构造成破坏同时增加表面活性基团数量的目的,使得复合材料中壳聚糖的接枝量增加到71.78%。复合材料兼具了壳聚糖和碳纳米管在抑菌性、缓释、硅藻生长抑制方面优异的性能,在对大肠杆菌、金黄色葡萄球菌、鳗弧菌及小舟形藻、成排舟形藻的防污性能实验中,复合材料在抑菌及抑制硅藻生长方面均表现出广谱、长效的抑制性能。
通過控製溶液的pH,在痠性條件下製備瞭單層多巴胺改性的多壁碳納米管,然後以戊二醛作為反應中間橋樑,共價接枝製備得到碳納米管/殼聚糖複閤材料。通過透射電子顯微鏡(TEM)、紅外光譜(FTIR)和熱重分析法(TGA)對複閤材料的結構和性能進行錶徵,結果錶明碳納米管的管壁外麵和管耑都被均勻包覆起來,包覆層厚度在6 nm左右;採用多巴胺單層膜包覆碳納米管,達到瞭減小對碳納米管結構造成破壞同時增加錶麵活性基糰數量的目的,使得複閤材料中殼聚糖的接枝量增加到71.78%。複閤材料兼具瞭殼聚糖和碳納米管在抑菌性、緩釋、硅藻生長抑製方麵優異的性能,在對大腸桿菌、金黃色葡萄毬菌、鰻弧菌及小舟形藻、成排舟形藻的防汙性能實驗中,複閤材料在抑菌及抑製硅藻生長方麵均錶現齣廣譜、長效的抑製性能。
통과공제용액적pH,재산성조건하제비료단층다파알개성적다벽탄납미관,연후이무이철작위반응중간교량,공개접지제비득도탄납미관/각취당복합재료。통과투사전자현미경(TEM)、홍외광보(FTIR)화열중분석법(TGA)대복합재료적결구화성능진행표정,결과표명탄납미관적관벽외면화관단도피균균포복기래,포복층후도재6 nm좌우;채용다파알단층막포복탄납미관,체도료감소대탄납미관결구조성파배동시증가표면활성기단수량적목적,사득복합재료중각취당적접지량증가도71.78%。복합재료겸구료각취당화탄납미관재억균성、완석、규조생장억제방면우이적성능,재대대장간균、금황색포도구균、만호균급소주형조、성배주형조적방오성능실험중,복합재료재억균급억제규조생장방면균표현출엄보、장효적억제성능。
By controlling the pH of the solution, single-layer dopamine modified multiwalled carbon nanotubes (micaDA-MWCNTs) were prepared under acid condition. Multiwalled carbon nanotubes/chitosan (CS/micaDA-MWCNTs) composites were prepared by covalent grafting method with glutaraldehyde as a bridge material between chitosan and multi-walled carbon nanotubes (MWCNTs). The structure and nature of CS/micaDA-MWCNTs composites were characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR) and thermal gravimetric analysis (TGA). The results showed that about 6 nm membrane layer of chitosan was well-distributively coated on the surface and the end of MWCNTs. The effective biocompatible strategy of dopamine monolayer film coated carbon nanotubes can not only achieve the purpose of modification with less damage of carbon nanotube structure, but also increase significant amounts of surface active groups of MWCNTs, thereby increasing the content of grafted chitosan. Thermogravimetry analysis (TGA) data showed the chitosan graft was approximately 71.78%. CS/micaDA-MWCNTs had the advantages of both CS and MWCNTs in bacteriostasis, sustained-release effect and diatom growth inhibition. Antifouling experiments indicated that the composites had an efficient broad-spectrum of antibacterial activity againstE.coli, S.aureus,Vibrio anguillarum,Navicula parva andNavicula rows.