化工学报
化工學報
화공학보
CIESC Jorunal
2015年
11期
4424-4430
,共7页
许世民%郎中敏%王亚雄%赫文秀%梁倩卿
許世民%郎中敏%王亞雄%赫文秀%樑倩卿
허세민%랑중민%왕아웅%혁문수%량천경
羟基化%碳纳米管%纳米流体%传热%CCD高速成像%热力学过程
羥基化%碳納米管%納米流體%傳熱%CCD高速成像%熱力學過程
간기화%탄납미관%납미류체%전열%CCD고속성상%열역학과정
hydroxylated%carbon nano-tubes%nanofluids%heat transfer%visualization with CCD%thermodynamic process
向多壁碳纳米管引入羟基基团,改善了其在制冷剂R141b中的分散性和稳定性。同时研究了不同质量分数纳米流体热导率、表面颗粒沉积、接触角变化对核沸腾传热性能的影响。结果表明:羟基化碳纳米流体强化沸腾传热,强化率随质量分数的增加而增加,沸腾后期有所下降。在测试浓度范围内,质量分数为0.05%,热通量为87.4 kW·m?2时,强化率达到最大168%。流体的热导率随着质量分数的增加而增大,质量分数为0.10%时其热导率是纯R141b的1.18倍。分析认为:纳米流体热导率的增加、表面沉积颗粒及纳米颗粒扰动是强化传热的主要影响因素,接触角变化的影响可忽略不计。结论由质量分数为0.03%纳米流体沸腾过程高速成像得到验证。
嚮多壁碳納米管引入羥基基糰,改善瞭其在製冷劑R141b中的分散性和穩定性。同時研究瞭不同質量分數納米流體熱導率、錶麵顆粒沉積、接觸角變化對覈沸騰傳熱性能的影響。結果錶明:羥基化碳納米流體彊化沸騰傳熱,彊化率隨質量分數的增加而增加,沸騰後期有所下降。在測試濃度範圍內,質量分數為0.05%,熱通量為87.4 kW·m?2時,彊化率達到最大168%。流體的熱導率隨著質量分數的增加而增大,質量分數為0.10%時其熱導率是純R141b的1.18倍。分析認為:納米流體熱導率的增加、錶麵沉積顆粒及納米顆粒擾動是彊化傳熱的主要影響因素,接觸角變化的影響可忽略不計。結論由質量分數為0.03%納米流體沸騰過程高速成像得到驗證。
향다벽탄납미관인입간기기단,개선료기재제랭제R141b중적분산성화은정성。동시연구료불동질량분수납미류체열도솔、표면과립침적、접촉각변화대핵비등전열성능적영향。결과표명:간기화탄납미류체강화비등전열,강화솔수질량분수적증가이증가,비등후기유소하강。재측시농도범위내,질량분수위0.05%,열통량위87.4 kW·m?2시,강화솔체도최대168%。류체적열도솔수착질량분수적증가이증대,질량분수위0.10%시기열도솔시순R141b적1.18배。분석인위:납미류체열도솔적증가、표면침적과립급납미과립우동시강화전열적주요영향인소,접촉각변화적영향가홀략불계。결론유질량분수위0.03%납미류체비등과정고속성상득도험증。
A refrigerant R141b-based nanofluid was made by hydroxylated carbon nano-tube particles in 0.01%, 0.03%, 0.05%, 0.07% and 0.10% mass fractions. An experimental study was carried out to investigate the nucleate boiling heat transfer characteristics of nanofluid on a smooth copper surface at pressure of 90.3 kPa. The surface roughness was made by sandpaper of grade 5000#. The result illustrates that the boiling heat transfer is enhanced by increasing nanoparticles. The improvement is related to the coefficient of thermal conductivity, deposition of nanoparticles and their disturbances to flow. The heat transfer coefficient increases with nanoparticle mass added except in later boiling period. The coefficient of thermal conductivity of 0.10% nanofluid is 1.18 times that of pure fluid R141b. The heat transfer coefficient is increased by 168% for 0.05% mass fraction at the heat flux of 87.4 kW·m?2. The boiling process of 0.03% mass fraction was recorded by the high-speed CCD.