化工学报
化工學報
화공학보
CIESC Jorunal
2015年
11期
4555-4564
,共10页
软测量%多模型%高斯过程回归%证据理论%仪表%发酵%算法
軟測量%多模型%高斯過程迴歸%證據理論%儀錶%髮酵%算法
연측량%다모형%고사과정회귀%증거이론%의표%발효%산법
soft sensor%multi-model%Gaussian process regression%Dempster-Shafer theory%instrumentation%fermentation%algorithm
针对生物发酵过程,提出了一种基于证据理论的高斯过程回归多模型软测量方法,其中多模型融合策略同时考虑了数据聚类特性和软测量子模型统计特性。首先,对聚类后的各子类建立高斯过程回归子模型;然后,基于聚类隶属度函数和高斯过程回归子模型后验概率分别设计子模型权值,并利用证据合成规则将两类权值进行证据合成得到融合权值;最后,将该融合权值作为加权因子对子模型进行融合。通过青霉素发酵过程仿真数据和红霉素发酵过程工业数据研究表明,相比单一模型和传统多模型高斯过程回归软测量方法,本文所提方法具有较高的预测精度和较小的预测不确定度。
針對生物髮酵過程,提齣瞭一種基于證據理論的高斯過程迴歸多模型軟測量方法,其中多模型融閤策略同時攷慮瞭數據聚類特性和軟測量子模型統計特性。首先,對聚類後的各子類建立高斯過程迴歸子模型;然後,基于聚類隸屬度函數和高斯過程迴歸子模型後驗概率分彆設計子模型權值,併利用證據閤成規則將兩類權值進行證據閤成得到融閤權值;最後,將該融閤權值作為加權因子對子模型進行融閤。通過青黴素髮酵過程倣真數據和紅黴素髮酵過程工業數據研究錶明,相比單一模型和傳統多模型高斯過程迴歸軟測量方法,本文所提方法具有較高的預測精度和較小的預測不確定度。
침대생물발효과정,제출료일충기우증거이론적고사과정회귀다모형연측량방법,기중다모형융합책략동시고필료수거취류특성화연측양자모형통계특성。수선,대취류후적각자류건립고사과정회귀자모형;연후,기우취류대속도함수화고사과정회귀자모형후험개솔분별설계자모형권치,병이용증거합성규칙장량류권치진행증거합성득도융합권치;최후,장해융합권치작위가권인자대자모형진행융합。통과청매소발효과정방진수거화홍매소발효과정공업수거연구표명,상비단일모형화전통다모형고사과정회귀연측량방법,본문소제방법구유교고적예측정도화교소적예측불학정도。
In this paper, a multi-model soft sensor method based on Dempster-Shafer theory (DS) and Gaussian process regression (GPR) was proposed. Firstly, GPR was used to build the sub-models of the proposed soft sensor after clustering training dataset. Secondly, the initial weightings were designed based on membership functions and output posteriori probabilities of GPR based sub-models, respectively. And the initial weightings were fused using the combination rule of DS. Finally, the weighted sum of sub-models with the fused weightings was used to output predictive means and uncertainty. The proposed method was validated on simulation data of a penicillin fermentation process and industrial data of an erythromycin fermentation process. For comparisons, single model-based soft sensor and traditional multi-model soft sensor were also studied. Simulations showed that the proposed method had better predictive accuracy and lower predictive uncertainty.