长沙大学学报
長沙大學學報
장사대학학보
Journal of Changsha University
2015年
5期
6-10
,共5页
整函数%微分多项式%唯一性%权分担
整函數%微分多項式%唯一性%權分擔
정함수%미분다항식%유일성%권분담
entire function%differential polynomials%uniqueness%weighted sharing
研究了整函数及其微分多项式权分担1值的唯一性问题,对先前的结果进行了补充和改善,并通过对有关引理的引导证明,对这个结果用不同的方法进行了证明。具体结果如下:若 f,g 为两个非常数整函数,n,k 为两个正整数,如果(fn )(k)与(gn )(k)分担(1,l),且满足下列条件:当 l =0时,n >5k +7;那么 f=c1 ecz ,g =c2 e -cz 或者 f=tg;其中 c,c1,c2,t 为满足(-1)k (c1 c2)n (nc)2k =1及 tn =1的常数。
研究瞭整函數及其微分多項式權分擔1值的唯一性問題,對先前的結果進行瞭補充和改善,併通過對有關引理的引導證明,對這箇結果用不同的方法進行瞭證明。具體結果如下:若 f,g 為兩箇非常數整函數,n,k 為兩箇正整數,如果(fn )(k)與(gn )(k)分擔(1,l),且滿足下列條件:噹 l =0時,n >5k +7;那麽 f=c1 ecz ,g =c2 e -cz 或者 f=tg;其中 c,c1,c2,t 為滿足(-1)k (c1 c2)n (nc)2k =1及 tn =1的常數。
연구료정함수급기미분다항식권분담1치적유일성문제,대선전적결과진행료보충화개선,병통과대유관인리적인도증명,대저개결과용불동적방법진행료증명。구체결과여하:약 f,g 위량개비상수정함수,n,k 위량개정정수,여과(fn )(k)여(gn )(k)분담(1,l),차만족하렬조건:당 l =0시,n >5k +7;나요 f=c1 ecz ,g =c2 e -cz 혹자 f=tg;기중 c,c1,c2,t 위만족(-1)k (c1 c2)n (nc)2k =1급 tn =1적상수。
This paper mainly studied the problem of uniqueness of weighted sharing 1 value of entire function and differential polynomial to supplement and improve previous results,and proved the results with different methods.Specific results are as follows:Let fand g be two nonconstant entire functions,and let n,k be two positive integers.If(fn )(k)and (gn )(k)share (1,l),and if one of conditions l =0 and n >5k +7 satisfied,then either f=c1 ecz ,g =c2 e -cz where c,c1 and c2 are three costants satisfying (-1)k (c1 c2 )n (nc)2k =1 or f(z)=tg(z)for a constant t such that tn =1 .