热力发电
熱力髮電
열력발전
Thermal Power Generation
2015年
10期
46-51,57
,共7页
陆续%张向宇%刘彤%张波%徐宏杰
陸續%張嚮宇%劉彤%張波%徐宏傑
륙속%장향우%류동%장파%서굉걸
火电厂%脱硝%制氨%尿素水解机理%热力学%动力学
火電廠%脫硝%製氨%尿素水解機理%熱力學%動力學
화전엄%탈초%제안%뇨소수해궤리%열역학%동역학
thermal power plant%denitrification%ammonia production%urea hydrolysis mechanism%thermo-dynamic%kinetics
研究尿素水解制氨机理是完善火电厂烟气脱硝用尿素水解工艺设计的前提.参考 ACWU (NH3-CO2-H2 O-(NH2)2 CO)体系汽液平衡机理构建了开口体系内尿素水解过程的物料平衡、化学平衡、热量平衡及相平衡非线性方程组,建立了反应体系的热力学模型和动力学模型;在自行设计并搭建的尿素水解中试装置上对机理模型的正确性进行了实验验证,分析了反应温度、操作压力和给料尿素质量分数对水解反应的影响,根据检测结果,计算拟合得出了火电厂脱硝尿素水解制氨操作条件下的反应动力学参数.分析结果表明:相平衡说明求解方法计算结果与实验检测结果基本吻合,该方法适用于火电厂尿素水解制氨工艺;随着反应温度的升高,反应液中水、氨及CO2的质量分数不断降低;随着给料尿素质量分数的升高,反应液中氨及CO2的质量分数增大,水的质量分数则不断减小;随着操作压力的不断升高,反应液中尿素及其衍生物的质量分数不断减小;尿素水解中试试验得到在0.6 MPa/150℃操作条件下,尿素水解反应指前因子A等于1.255×1012 s-1,活化能E等于107.24 kJ/mol.
研究尿素水解製氨機理是完善火電廠煙氣脫硝用尿素水解工藝設計的前提.參攷 ACWU (NH3-CO2-H2 O-(NH2)2 CO)體繫汽液平衡機理構建瞭開口體繫內尿素水解過程的物料平衡、化學平衡、熱量平衡及相平衡非線性方程組,建立瞭反應體繫的熱力學模型和動力學模型;在自行設計併搭建的尿素水解中試裝置上對機理模型的正確性進行瞭實驗驗證,分析瞭反應溫度、操作壓力和給料尿素質量分數對水解反應的影響,根據檢測結果,計算擬閤得齣瞭火電廠脫硝尿素水解製氨操作條件下的反應動力學參數.分析結果錶明:相平衡說明求解方法計算結果與實驗檢測結果基本吻閤,該方法適用于火電廠尿素水解製氨工藝;隨著反應溫度的升高,反應液中水、氨及CO2的質量分數不斷降低;隨著給料尿素質量分數的升高,反應液中氨及CO2的質量分數增大,水的質量分數則不斷減小;隨著操作壓力的不斷升高,反應液中尿素及其衍生物的質量分數不斷減小;尿素水解中試試驗得到在0.6 MPa/150℃操作條件下,尿素水解反應指前因子A等于1.255×1012 s-1,活化能E等于107.24 kJ/mol.
연구뇨소수해제안궤리시완선화전엄연기탈초용뇨소수해공예설계적전제.삼고 ACWU (NH3-CO2-H2 O-(NH2)2 CO)체계기액평형궤리구건료개구체계내뇨소수해과정적물료평형、화학평형、열량평형급상평형비선성방정조,건립료반응체계적열역학모형화동역학모형;재자행설계병탑건적뇨소수해중시장치상대궤리모형적정학성진행료실험험증,분석료반응온도、조작압력화급료뇨소질량분수대수해반응적영향,근거검측결과,계산의합득출료화전엄탈초뇨소수해제안조작조건하적반응동역학삼수.분석결과표명:상평형설명구해방법계산결과여실험검측결과기본문합,해방법괄용우화전엄뇨소수해제안공예;수착반응온도적승고,반응액중수、안급CO2적질량분수불단강저;수착급료뇨소질량분수적승고,반응액중안급CO2적질량분수증대,수적질량분수칙불단감소;수착조작압력적불단승고,반응액중뇨소급기연생물적질량분수불단감소;뇨소수해중시시험득도재0.6 MPa/150℃조작조건하,뇨소수해반응지전인자A등우1.255×1012 s-1,활화능E등우107.24 kJ/mol.
Study on urea hydrolysis reaction mechanism is a premise for process design of ammonia produc-tion by urea hydrolysis in thermal power plants.In this paper,the nonlinear equations of mass balance, chemical equilibrium,thermal equilibrium and phase equilibrium for urea hydrolysis in an open system were established,according to the vapor-liquid equilibrium mechanism of ACWU system (NH3-CO2-H2 O-(NH2 )2 CO).The thermodynamic and kinetics model of the urea hydrolysis reaction system were built,and the correctness of the established models were verified on a self-built pilot scale urea hydrolysis test sys-tem.Then,experiments were carried out on this pilot scale experimental system to investigate the effect of reaction temperature,pressure and urea concentration in feed on the urea hydrolysis.At last,the kinetic pa-rameters of the urea hydrolysis reaction under condition for denitration in thermal power plants were ob-tained,through fitting the experimental data.The results show this phase-balance solution method's calcu-lation result agrees well with the experimental result,indicating this method can be applied in the thermal power plants ammonia production by urea hydrolysis.With an increase in reaction temperature,the concen-tration of water,amine and CO2 in the reacted liquid decreased.As the urea concentration in feed increased, the concentration of amine and CO2 in the reacted liquid increased while that of the water decreased.When the pressure rose,the urea and its derivatives in the reacted liquid decreased.At 0.6 MPa and 150 ℃,the pre-exponential factor and activation energy of the urea hydrolysis reaction is 1.255×1012 s-1 and 107.24 kJ/mol,respectively.