福州大学学报(自然科学版)
福州大學學報(自然科學版)
복주대학학보(자연과학판)
Journal of Fuzhou University (Natural Science Edition)
2015年
5期
594-598
,共5页
广义Riemann边值问题%Markushevich问题%位移%共轭%求解
廣義Riemann邊值問題%Markushevich問題%位移%共軛%求解
엄의Riemann변치문제%Markushevich문제%위이%공액%구해
generalized Riemann boundary value problem%Markushevich problem%shift%conjuga-tion%solution
考虑下述带位移的广义Riemann边值问题Φ+[α( t)]=G1( t)Φ-( t)+G2( t)Φ-( t)+f( t),( t∈L),边界L为简单封闭的Lyapunov曲线,并将复平面C分隔为内域D+和外域D-两部分。正位移或反位移α( t)是曲线L至它自身的同胚变换,且系数满足G1(t), G2(t), f(t),α′(t)∈Hμ(t)。讨论当G1(t)±G2(t)之一为常数时,求解并给出了上述问题的封闭形式解,从而得到比前人更好的结果。最后,通过一个实例,验证了求解过程及封闭形式解的正确性。
攷慮下述帶位移的廣義Riemann邊值問題Φ+[α( t)]=G1( t)Φ-( t)+G2( t)Φ-( t)+f( t),( t∈L),邊界L為簡單封閉的Lyapunov麯線,併將複平麵C分隔為內域D+和外域D-兩部分。正位移或反位移α( t)是麯線L至它自身的同胚變換,且繫數滿足G1(t), G2(t), f(t),α′(t)∈Hμ(t)。討論噹G1(t)±G2(t)之一為常數時,求解併給齣瞭上述問題的封閉形式解,從而得到比前人更好的結果。最後,通過一箇實例,驗證瞭求解過程及封閉形式解的正確性。
고필하술대위이적엄의Riemann변치문제Φ+[α( t)]=G1( t)Φ-( t)+G2( t)Φ-( t)+f( t),( t∈L),변계L위간단봉폐적Lyapunov곡선,병장복평면C분격위내역D+화외역D-량부분。정위이혹반위이α( t)시곡선L지타자신적동배변환,차계수만족G1(t), G2(t), f(t),α′(t)∈Hμ(t)。토론당G1(t)±G2(t)지일위상수시,구해병급출료상술문제적봉폐형식해,종이득도비전인경호적결과。최후,통과일개실례,험증료구해과정급봉폐형식해적정학성。
In this paper the generalized Riemann boundary value problem with shift Φ+[α( t) ] =G1(t)Φ-(t) +G2(t)Φ-(t) +f(t), (t∈L), is investigated in the class of piecewise analytic func-tions.The boundary L is a simple closed Lyapunov curve in complex plane C, let D+be the interior domain , and D-=C\D+,α( t) is a homeomorphism onto itself which preserves or changes the orien-tation of L, the coefficients G1(t), G2(t), f(t),α′(t) belong to Hμ(t).When one case of G1(t) ± G2 ( t)≡const is satisfied , the paper establishes the closed form of the solution of problem above , which is better than some past works .Finally, an example is given to verify the correctness of the solu-tion process and the closed form solution .