非常规油气
非常規油氣
비상규유기
Unconventional Oil & Gas
2015年
3期
50-57
,共8页
葛宏选%党海龙%解伟%王继超
葛宏選%黨海龍%解偉%王繼超
갈굉선%당해룡%해위%왕계초
变形介质%不稳定渗流%非线性%启动压力梯度%数学模型
變形介質%不穩定滲流%非線性%啟動壓力梯度%數學模型
변형개질%불은정삼류%비선성%계동압력제도%수학모형
deformable medium%unstable seepage flow%non-linear%starting pressure gradient%mathematical model
深层低渗透油藏中, 储层承受高温高压, 在开发过程中储层部分或者全部会发生不可逆变形, 再加上存在启动压力梯度, 储层流体呈现非线性渗流特点, 使得地层特征更加复杂, 严重影响油田开发. 渗流室内实验研究表明, 非线性段可以用幂律关系进行描述. 在考虑了启动压力梯度和变形介质存在的前提下, 建立了非线性不稳定渗流数学模型, 并且求出定产量和定井底流压条件下模型的解. 模型的实例分析结果表明, 随时间增加, 动边界向外推移, 推移速度越来越慢; 当启动压力梯度和压力敏感系数都增大时, 相同时间向外拓展半径越小, 压力波传递速度和范围也越小. 因此, 开发此类油田, 其开发特征必须区别于常规的线性—弹性油藏的开发特点; 在实际生产中, 应利用模型对不同类型油藏进行分析, 总结开采特征, 制订科学、合理的技术政策, 提高油田最终采收率.
深層低滲透油藏中, 儲層承受高溫高壓, 在開髮過程中儲層部分或者全部會髮生不可逆變形, 再加上存在啟動壓力梯度, 儲層流體呈現非線性滲流特點, 使得地層特徵更加複雜, 嚴重影響油田開髮. 滲流室內實驗研究錶明, 非線性段可以用冪律關繫進行描述. 在攷慮瞭啟動壓力梯度和變形介質存在的前提下, 建立瞭非線性不穩定滲流數學模型, 併且求齣定產量和定井底流壓條件下模型的解. 模型的實例分析結果錶明, 隨時間增加, 動邊界嚮外推移, 推移速度越來越慢; 噹啟動壓力梯度和壓力敏感繫數都增大時, 相同時間嚮外拓展半徑越小, 壓力波傳遞速度和範圍也越小. 因此, 開髮此類油田, 其開髮特徵必鬚區彆于常規的線性—彈性油藏的開髮特點; 在實際生產中, 應利用模型對不同類型油藏進行分析, 總結開採特徵, 製訂科學、閤理的技術政策, 提高油田最終採收率.
심층저삼투유장중, 저층승수고온고압, 재개발과정중저층부분혹자전부회발생불가역변형, 재가상존재계동압력제도, 저층류체정현비선성삼류특점, 사득지층특정경가복잡, 엄중영향유전개발. 삼류실내실험연구표명, 비선성단가이용멱률관계진행묘술. 재고필료계동압력제도화변형개질존재적전제하, 건립료비선성불은정삼류수학모형, 병차구출정산량화정정저류압조건하모형적해. 모형적실례분석결과표명, 수시간증가, 동변계향외추이, 추이속도월래월만; 당계동압력제도화압력민감계수도증대시, 상동시간향외탁전반경월소, 압력파전체속도화범위야월소. 인차, 개발차류유전, 기개발특정필수구별우상규적선성—탄성유장적개발특점; 재실제생산중, 응이용모형대불동류형유장진행분석, 총결개채특정, 제정과학、합리적기술정책, 제고유전최종채수솔.
Deep low-permeability reservoirs feature in high temperature and high pressure. So reservoir may be deformed partially and thoroughly during development, which thus affects dynamic features of oilfield development seriously. Further-more, starting pressure gradient leads to non-linear seepage flow of reservoir fluids, which makes formation features more complicated. Seepage flow lab study showed that non-linear interval could be described by the power law relation. Taking starting pressure gradient and deformable medium into account, in this paper, a mathematic model of non-linear seepage flow was established, and the solution of the model with constant yield and bottom-hole flowing pressure was acquired. Case analysis showed that the flowing boundary was pushed outward more and more slowly as time increased. When starting pressure gradient and pressure sensitivity coefficient increased, the expanding radius got smaller at the same time, and the pressure wave propagation velocity and range became smaller. Therefore, development feature of such oilfields have to vary from that of conventional linear-elastic reservoirs. In actual production, types should be used for analyzing different reser-voirs and concluding the characteristics of these reservoirs, so as to formulate scientific and reasonable techniques to en-hance ultimate recovery in oilfields.