非常规油气
非常規油氣
비상규유기
Unconventional Oil & Gas
2015年
5期
45-48
,共4页
高相对分子质量%反相乳液%共聚物%聚合物%合成
高相對分子質量%反相乳液%共聚物%聚閤物%閤成
고상대분자질량%반상유액%공취물%취합물%합성
high molecular%inverse emulsion%copolymer%polymer%synthesis
在概述反相乳液聚合物合成进展的基础上,对提高其相对分子质量和改进耐温性进行了研究.通过优选耐温单体提高产物耐温性,通过优选合成条件提高产物相对分子质量.选用丙烯酸(AA)、丙烯酰胺(AM) 和2-丙烯酰氨基-2-甲基丙磺酸(AMPS) 为水溶性单体,以液体石蜡为油相,以过硫酸盐为引发剂,采用反相乳液共聚法合成了AA/AM/AMPS反相乳液耐温抗盐聚合物.试验发现,乳化剂最佳用量为8%,最佳油水比为1:1,最佳引发温度为20℃,在此条件下合成的反相乳液耐温抗盐聚合物相对分子质量可达1500×104.在90℃矿化度为32868mg/L的水中,7天内产物黏度保留率较常规聚丙烯酰胺高出59%; 溶解时间仅为常规聚丙烯酰胺的1/7,具有较好的耐温抗盐性能和溶解性.研究结果对现阶段反相乳液聚合物性能的提高具有借鉴作用.
在概述反相乳液聚閤物閤成進展的基礎上,對提高其相對分子質量和改進耐溫性進行瞭研究.通過優選耐溫單體提高產物耐溫性,通過優選閤成條件提高產物相對分子質量.選用丙烯痠(AA)、丙烯酰胺(AM) 和2-丙烯酰氨基-2-甲基丙磺痠(AMPS) 為水溶性單體,以液體石蠟為油相,以過硫痠鹽為引髮劑,採用反相乳液共聚法閤成瞭AA/AM/AMPS反相乳液耐溫抗鹽聚閤物.試驗髮現,乳化劑最佳用量為8%,最佳油水比為1:1,最佳引髮溫度為20℃,在此條件下閤成的反相乳液耐溫抗鹽聚閤物相對分子質量可達1500×104.在90℃礦化度為32868mg/L的水中,7天內產物黏度保留率較常規聚丙烯酰胺高齣59%; 溶解時間僅為常規聚丙烯酰胺的1/7,具有較好的耐溫抗鹽性能和溶解性.研究結果對現階段反相乳液聚閤物性能的提高具有藉鑒作用.
재개술반상유액취합물합성진전적기출상,대제고기상대분자질량화개진내온성진행료연구.통과우선내온단체제고산물내온성,통과우선합성조건제고산물상대분자질량.선용병희산(AA)、병희선알(AM) 화2-병희선안기-2-갑기병광산(AMPS) 위수용성단체,이액체석사위유상,이과류산염위인발제,채용반상유액공취법합성료AA/AM/AMPS반상유액내온항염취합물.시험발현,유화제최가용량위8%,최가유수비위1:1,최가인발온도위20℃,재차조건하합성적반상유액내온항염취합물상대분자질량가체1500×104.재90℃광화도위32868mg/L적수중,7천내산물점도보류솔교상규취병희선알고출59%; 용해시간부위상규취병희선알적1/7,구유교호적내온항염성능화용해성.연구결과대현계단반상유액취합물성능적제고구유차감작용.
Summing up the progress of inverse emulsion polymer synthesis, enhancing molecular weight and high temperature resistance was probed into in this paper. Temperature resistance of product was enhanced by selecting temperature resistant monomer, and molecular weight of product by optimizing synthesis conditions. Selecting acrylic acid (AA), acrylamide (AM), 2- acrylamido-2-methylpropane sulfonic acid (AMPS) as water-soluble monomer, liquid paraffin as oil phase, the persulfate as initiator, inverse emulsion copolymerization was used for synthesizing AA / AM / AMPS inverse emulsion poly-mer resistant to temperature and salt. Test showed that the optimum amount of emulsifier was 8%, the best oil-water ratio was 1. 1:1, the best initiation temperature was 20℃, and the molecular weight of inverse emulsion polymer resistant to tem-perature and salt could reach 1500×104. In water of 90℃and 32868mg/L salinity, the product viscosity retention rate was 59% higher than conventional polyacrylamide within 7 days, but dissolution time was only 1/7 of conventional polyacrylam-ide, with better temperature and salt resistant performance and dissolution. The results could be reference to improvement of the property of inverse emulsion polymer at the present stage.