物流技术
物流技術
물류기술
Logistics Technology
2015年
9期
108-111
,共4页
电动汽车%电池快换%配送路径%遗传算法
電動汽車%電池快換%配送路徑%遺傳算法
전동기차%전지쾌환%배송로경%유전산법
electric vehicle%battery swap%distribution route%genetic algorithm
构建了换电模式下电动汽车动力电池配送网络,研究具有带时间窗要求且同时取送货车辆的配送路径优化问题。通过分析动力电池配送路径优化问题中变量之间的关系,构造了优先函数来确定初始种群,提出了一种求解带时间窗、同时取送货车辆路径优化问题的改进遗传算法,该算法能克服传统遗传算法过早收敛的缺陷。算例表明,与传统遗传算法相比,提出的遗传算法可在更短时间内求得带时间窗、同时取送货车辆路径优化问题的最优解。
構建瞭換電模式下電動汽車動力電池配送網絡,研究具有帶時間窗要求且同時取送貨車輛的配送路徑優化問題。通過分析動力電池配送路徑優化問題中變量之間的關繫,構造瞭優先函數來確定初始種群,提齣瞭一種求解帶時間窗、同時取送貨車輛路徑優化問題的改進遺傳算法,該算法能剋服傳統遺傳算法過早收斂的缺陷。算例錶明,與傳統遺傳算法相比,提齣的遺傳算法可在更短時間內求得帶時間窗、同時取送貨車輛路徑優化問題的最優解。
구건료환전모식하전동기차동력전지배송망락,연구구유대시간창요구차동시취송화차량적배송로경우화문제。통과분석동력전지배송로경우화문제중변량지간적관계,구조료우선함수래학정초시충군,제출료일충구해대시간창、동시취송화차량로경우화문제적개진유전산법,해산법능극복전통유전산법과조수렴적결함。산례표명,여전통유전산법상비,제출적유전산법가재경단시간내구득대시간창、동시취송화차량로경우화문제적최우해。
In this paper, through analyzing the relationship between the variables in the optimization of the distribution route for vehicle batteries, built the priority function to determine the initial population, then proposed the improved genetic algorithm for the route optimization of the distribution vehicles that simultaneously delivered and collected goods with time window constraint, and at the end, through a comparison with the traditional genetic algorithm, proved the validity and superiority of the algorithm proposed.