宁波大学学报(理工版)
寧波大學學報(理工版)
저파대학학보(리공판)
Journal of Ningbo University (Natural Science & Engineering Edition)
2015年
4期
36-41
,共6页
黄元捷%赵杰煜%程婷婷%陈普强
黃元捷%趙傑煜%程婷婷%陳普彊
황원첩%조걸욱%정정정%진보강
目标跟踪%目标运动预估%卡尔曼滤波器%P-N 学习
目標跟蹤%目標運動預估%卡爾曼濾波器%P-N 學習
목표근종%목표운동예고%잡이만려파기%P-N 학습
visual object tracking%target moving prediction%Kalman filter%P-N learning
为处理目标的消失重现、形变及环境变化等问题,要求跟踪算法有一定的检测与学习能力。针对全局检测方法因冗余检测而造成检测效率低下的问题,在基于 P-N 学习的跟踪框架的基础上,提出一种自适应生成检测范围的目标跟踪算法。通过引入卡尔曼滤波器(Kalman filter)对目标位置、尺度以及两者的变化速度进行预估,在检测前根据预估信息自适应生成检测范围,提高检测效率。在公开的 CoGD 数据集上进行实验,结果证明该算法较原始算法在准确度基本不变的基础上,速度得到显著改善。
為處理目標的消失重現、形變及環境變化等問題,要求跟蹤算法有一定的檢測與學習能力。針對全跼檢測方法因冗餘檢測而造成檢測效率低下的問題,在基于 P-N 學習的跟蹤框架的基礎上,提齣一種自適應生成檢測範圍的目標跟蹤算法。通過引入卡爾曼濾波器(Kalman filter)對目標位置、呎度以及兩者的變化速度進行預估,在檢測前根據預估信息自適應生成檢測範圍,提高檢測效率。在公開的 CoGD 數據集上進行實驗,結果證明該算法較原始算法在準確度基本不變的基礎上,速度得到顯著改善。
위처리목표적소실중현、형변급배경변화등문제,요구근종산법유일정적검측여학습능력。침대전국검측방법인용여검측이조성검측효솔저하적문제,재기우 P-N 학습적근종광가적기출상,제출일충자괄응생성검측범위적목표근종산법。통과인입잡이만려파기(Kalman filter)대목표위치、척도이급량자적변화속도진행예고,재검측전근거예고신식자괄응생성검측범위,제고검측효솔。재공개적 CoGD 수거집상진행실험,결과증명해산법교원시산법재준학도기본불변적기출상,속도득도현저개선。
Visual object tracking is a highly challenging task due to the fact that it suffers from many intrinsic problems, such as object disappearance, reappearance, deformation and environment variation. A tracking algorithm is required to have the ability of detecting and learning. Given the fact that the global detector would generate certain redundant detections, we propose an approach that adaptively generates the detective range for visual object tracking based on the framework of P-N learning. We introduce a Kalman filter to predict the location, the object scale as well as their changing rate. Then we utilize the predicted information to reduce the scope of detecting. Our experimental results on the pubic CoGD dataset show that our method increases the speed dramatically while without compromising the accuracy.