光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
Spectroscopy and Spectral Analysis
2015年
9期
2620-2624
,共5页
刘勇%马彪%郑长松%谢商育
劉勇%馬彪%鄭長鬆%謝商育
류용%마표%정장송%사상육
油液光谱分析%Wiener 过程%综合传动%失效预测
油液光譜分析%Wiener 過程%綜閤傳動%失效預測
유액광보분석%Wiener 과정%종합전동%실효예측
Atomic emission spectroscopy%Wiener process%Power-shift steering transmission%Failure prediction
原子发射光谱是分析油液中微小磨损颗粒元素浓度的重要方法。作为一种非直接测量方法,油液光谱数据是车辆综合传动装置可靠性评估中的系统性能劣化的重要监测指标,可用于系统失效评估与剩余寿命预测。针对油液光谱数据这类型的一元劣化失效,随机过程尤其是 Wiener 过程模型具有良好的计算分析性质,在基于性能劣化的可靠性分析中应用日趋广泛。通过对车辆综合传动装置运行中的实时采样,共取得50个油液光谱样本。采用其中三种指示元素的线性回归方程来计算综合传动装置运行中每个瞬时的特征值与均值。基于正漂移 Wiener 过程,建立了综合传动装置的劣化失效预测模型,并基于 R 语言环境进行了随机微分方程的仿真与求解。得到了油液光谱中的 Fe,Cu 和 Mo 元素含量增长趋势的预测结果以及三种指示元素各自的首中时间。经比较,劣化失效周期的预测值较之条件维护时间延长了27 Mh(15.9%)。维护时间的延长,能够有效的减少全寿命周期内的维护次数,并最终降低维护成本。研究结果表明,该方法适用于综合传动装置的磨损与失效预测、全寿命周期费用与维护计划的优化。同时,也可推广至其他复杂机械系统的失效预测与评价等相关领域。
原子髮射光譜是分析油液中微小磨損顆粒元素濃度的重要方法。作為一種非直接測量方法,油液光譜數據是車輛綜閤傳動裝置可靠性評估中的繫統性能劣化的重要鑑測指標,可用于繫統失效評估與剩餘壽命預測。針對油液光譜數據這類型的一元劣化失效,隨機過程尤其是 Wiener 過程模型具有良好的計算分析性質,在基于性能劣化的可靠性分析中應用日趨廣汎。通過對車輛綜閤傳動裝置運行中的實時採樣,共取得50箇油液光譜樣本。採用其中三種指示元素的線性迴歸方程來計算綜閤傳動裝置運行中每箇瞬時的特徵值與均值。基于正漂移 Wiener 過程,建立瞭綜閤傳動裝置的劣化失效預測模型,併基于 R 語言環境進行瞭隨機微分方程的倣真與求解。得到瞭油液光譜中的 Fe,Cu 和 Mo 元素含量增長趨勢的預測結果以及三種指示元素各自的首中時間。經比較,劣化失效週期的預測值較之條件維護時間延長瞭27 Mh(15.9%)。維護時間的延長,能夠有效的減少全壽命週期內的維護次數,併最終降低維護成本。研究結果錶明,該方法適用于綜閤傳動裝置的磨損與失效預測、全壽命週期費用與維護計劃的優化。同時,也可推廣至其他複雜機械繫統的失效預測與評價等相關領域。
원자발사광보시분석유액중미소마손과립원소농도적중요방법。작위일충비직접측량방법,유액광보수거시차량종합전동장치가고성평고중적계통성능열화적중요감측지표,가용우계통실효평고여잉여수명예측。침대유액광보수거저류형적일원열화실효,수궤과정우기시 Wiener 과정모형구유량호적계산분석성질,재기우성능열화적가고성분석중응용일추엄범。통과대차량종합전동장치운행중적실시채양,공취득50개유액광보양본。채용기중삼충지시원소적선성회귀방정래계산종합전동장치운행중매개순시적특정치여균치。기우정표이 Wiener 과정,건립료종합전동장치적열화실효예측모형,병기우 R 어언배경진행료수궤미분방정적방진여구해。득도료유액광보중적 Fe,Cu 화 Mo 원소함량증장추세적예측결과이급삼충지시원소각자적수중시간。경비교,열화실효주기적예측치교지조건유호시간연장료27 Mh(15.9%)。유호시간적연장,능구유효적감소전수명주기내적유호차수,병최종강저유호성본。연구결과표명,해방법괄용우종합전동장치적마손여실효예측、전수명주기비용여유호계화적우화。동시,야가추엄지기타복잡궤계계통적실효예측여평개등상관영역。
The most common methodology used in element concentration measurement and analyzing of wear particles is Atomic emission (AE)spectroscopy.As an indirect measuring method,the oil spectral data is introduced to indicate the performance degradation and the residual life prediction in the reliability evaluation of Power shift steering transmission (PSST).Stochastic methods especially the Wiener process is convenient in solving and analyzing the unitary degradation failure indicated by the oil spectral data.The oil data have been sampled in the real operating condition,and the data set has more than 50 samples taken from PSST.The mean values and time-dependent characteristics of three indicating elements are statistically obtained by the line-ar regression analysis.The model of the degradation and failure prediction has been proposed based on the Wiener process with the positive drift.For modeling and simulation the software R was used.Therefore,the trend curves of diffusion process with their First Hitting Time have been predicted.Through comparison,the time intervals of condition-based maintenance have been extended as 27 Mh (15.9%).This will save the cost of maintenances by eliminate the preventive maintained cycles.The advan-tage and novelty of the outcomes presented in the article are that the stochastic process might be applied for predicting the degra-dation failure occurrence and also for optimizing the maintenance intervals and the cost-benefit.As might be expected,the meth-od can be extended to other cases of wear prediction and evaluation in complex mechanical system.