光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
Spectroscopy and Spectral Analysis
2015年
9期
2526-2529
,共4页
廖享%王青%符继红%唐军
廖享%王青%符繼紅%唐軍
료향%왕청%부계홍%당군
薰衣草精油%近红外光谱%正交信号校正%向前间隔偏最小二乘法
薰衣草精油%近紅外光譜%正交信號校正%嚮前間隔偏最小二乘法
훈의초정유%근홍외광보%정교신호교정%향전간격편최소이승법
Lavender essential oil%Near infrared spectroscopy%Orthogonal signal transformation%Forward interval partial least squares
为建立快速测定新疆薰衣草精油中芳樟醇(linalool)、乙酸芳樟酯(linalyl acetate)含量的定量分析模型,采用近红外吸收光谱法(NIR)测定了165个精油样品,通过对近红外光谱吸收峰分析,在7100~4500 cm-1波数范围内化学信息量比较丰富且噪音低,可选择此波数段为分析区间。剔除8个异常样本后,通过聚类方法划分为105个校正集样本和52个验证集样本,结合气相色谱质谱(GC-MS)法测定的薰衣草精油 lina-lool 和 linalyl acetate 的含量,建立原始数据矩阵。对比不同的预处理方法对原始近红外光谱的过滤作用,其中正交信号变换(OSC)方法效果明显,对两种化合物的预测均方根误差(RMSEP)分别为0.226和0.558,再用向前间隔偏最小二乘法(FiPLS)剔除与待测成分无关或呈非线性关系的波长点,最终得到8个间隔区间共160个波长点的数据子集。使用 OSC-FiPLS 优化处理的数据子集结合偏最小二乘法(PLS)建立新疆薰衣草精油中 linalool 和 linalyl acetate 的快速定量分析模型,在模型中二成分的隐变量数都为8。交互验证均方根误差(RMSECV)分别为0.170和0.416;预测均方根误差(RMSEP)分别为0.188和0.364。结果表明,经OSC 和 FiPLS 预处理建立的 PLS-NIR 定量分析模型稳健性好,测定精度高,能快速测定薰衣草精油中 lina-lool 和 linalyl acetate 含量,并且具有良好的预测能力。可为新疆薰衣草精油主要成分的快速定量分析提供一种新的有效方法。
為建立快速測定新疆薰衣草精油中芳樟醇(linalool)、乙痠芳樟酯(linalyl acetate)含量的定量分析模型,採用近紅外吸收光譜法(NIR)測定瞭165箇精油樣品,通過對近紅外光譜吸收峰分析,在7100~4500 cm-1波數範圍內化學信息量比較豐富且譟音低,可選擇此波數段為分析區間。剔除8箇異常樣本後,通過聚類方法劃分為105箇校正集樣本和52箇驗證集樣本,結閤氣相色譜質譜(GC-MS)法測定的薰衣草精油 lina-lool 和 linalyl acetate 的含量,建立原始數據矩陣。對比不同的預處理方法對原始近紅外光譜的過濾作用,其中正交信號變換(OSC)方法效果明顯,對兩種化閤物的預測均方根誤差(RMSEP)分彆為0.226和0.558,再用嚮前間隔偏最小二乘法(FiPLS)剔除與待測成分無關或呈非線性關繫的波長點,最終得到8箇間隔區間共160箇波長點的數據子集。使用 OSC-FiPLS 優化處理的數據子集結閤偏最小二乘法(PLS)建立新疆薰衣草精油中 linalool 和 linalyl acetate 的快速定量分析模型,在模型中二成分的隱變量數都為8。交互驗證均方根誤差(RMSECV)分彆為0.170和0.416;預測均方根誤差(RMSEP)分彆為0.188和0.364。結果錶明,經OSC 和 FiPLS 預處理建立的 PLS-NIR 定量分析模型穩健性好,測定精度高,能快速測定薰衣草精油中 lina-lool 和 linalyl acetate 含量,併且具有良好的預測能力。可為新疆薰衣草精油主要成分的快速定量分析提供一種新的有效方法。
위건립쾌속측정신강훈의초정유중방장순(linalool)、을산방장지(linalyl acetate)함량적정량분석모형,채용근홍외흡수광보법(NIR)측정료165개정유양품,통과대근홍외광보흡수봉분석,재7100~4500 cm-1파수범위내화학신식량비교봉부차조음저,가선택차파수단위분석구간。척제8개이상양본후,통과취류방법화분위105개교정집양본화52개험증집양본,결합기상색보질보(GC-MS)법측정적훈의초정유 lina-lool 화 linalyl acetate 적함량,건립원시수거구진。대비불동적예처리방법대원시근홍외광보적과려작용,기중정교신호변환(OSC)방법효과명현,대량충화합물적예측균방근오차(RMSEP)분별위0.226화0.558,재용향전간격편최소이승법(FiPLS)척제여대측성분무관혹정비선성관계적파장점,최종득도8개간격구간공160개파장점적수거자집。사용 OSC-FiPLS 우화처리적수거자집결합편최소이승법(PLS)건립신강훈의초정유중 linalool 화 linalyl acetate 적쾌속정량분석모형,재모형중이성분적은변량수도위8。교호험증균방근오차(RMSECV)분별위0.170화0.416;예측균방근오차(RMSEP)분별위0.188화0.364。결과표명,경OSC 화 FiPLS 예처리건립적 PLS-NIR 정량분석모형은건성호,측정정도고,능쾌속측정훈의초정유중 lina-lool 화 linalyl acetate 함량,병차구유량호적예측능력。가위신강훈의초정유주요성분적쾌속정량분석제공일충신적유효방법。
This work was undertaken to establish a quantitative analysis model which can rapid determinate the content of lina-lool,linalyl acetate of Xinjiang lavender essential oil.Totally 165 lavender essential oil samples were measured by using near in-frared absorption spectrum(NIR),after analyzing the near infrared spectral absorption peaks of all samples,lavender essential oil have abundant chemical information and the interference of random noise may be relatively low on the spectral intervals of 7 100~4 500 cm-1 .Thus,the PLS models was constructed by using this interval for further analysis.8 abnormal samples were eliminated.Through the clustering method,157 lavender essential oil samples were divided into 105 calibration set samples and 52 validation set samples.Gas chromatography mass spectrometry (GC-MS)was used as a tool to determine the content of lina-lool and linalyl acetate in lavender essential oil.Then the matrix was established with the GC-MS raw data of two compounds in combination with the original NIR data.In order to optimize the model,different pretreatment methods were used to preprocess the raw NIR spectral to contrast the spectral filtering effect,after analysizing the quantitative model results of linalool and linalyl acetate,the root mean square error prediction(RMSEP)of orthogonal signal transformation (OSC)was 0.226,0.558,spectral-ly,it was the optimum pretreatment method.In addition,forward interval partial least squares (FiPLS)method was used to ex-clude the wavelength points which has nothing to do with determination composition or present nonlinear correlation,finally 8 spectral intervals totally 160 wavelength points were obtained as the dataset.Combining the data sets which have optimized by OSC-FiPLS with partial least squares(PLS)to establish a rapid quantitative analysis model for determining the content of linalool and linalyl acetate in Xinjiang lavender essential oil,numbers of hidden variables of two components were 8 in the model.The performance of the model was evaluated according to root mean square error of cross-validation (RMSECV),root mean square error of prediction (RMSEP).In the model,RESECV of linalool and linalyl acetate were 0.170 and 0.416,respectively;RM-SEP were 0.188 and 0.364.The results indicated that raw data was pretreated by OSC and FiPLS,the NIR-PLS quantitative a-nalysis model with good robustness,high measurement precision;it could quickly determine the content of linalool and linalyl ac-etate in lavender essential oil.In addition,the model has a favorable prediction ability.The study also provide a new effective method which could rapid quantitative analysis the major components of Xinjiang lavender essential oil.