振动与冲击
振動與遲擊
진동여충격
Journal of Vibration and Shock
2015年
19期
62-70
,共9页
王伟%周洲%祝小平%王睿
王偉%週洲%祝小平%王睿
왕위%주주%축소평%왕예
非线性气动弹性%极限环颤振%CR 理论%非定常气动力%动态失速%Newmark 积分法
非線性氣動彈性%極限環顫振%CR 理論%非定常氣動力%動態失速%Newmark 積分法
비선성기동탄성%겁한배전진%CR 이론%비정상기동력%동태실속%Newmark 적분법
nonlinear aeroelasticity%limit cycle oscillation%CR theory%unsteady aerodynamics loads%dynamic stall%Newmark integration method
大展弦比大柔性机翼在气动载荷的作用下,产生较大的弹性变形,其惯性特性、刚度特性、动气动弹性特性等亦发生较大改变,常规的线性气动弹性分析方法不再适用。基于 Co-rotational(CR)理论,推导了机翼变形后的切线刚度矩阵和质量矩阵,建立了考虑几何非线性效应的大柔性机翼结构动力学模型;耦合改进的 ONERA 非线性非定常气动力模型,提出了一种适用于大柔性机翼的非线性气动弹性求解方法。采用 Newmark 直接数值积分法及松耦合技术在时域内对气动弹性运动方程进行求解,对所提出的非线性气动弹性求解方法的正确性和精度进行了验证,并研究了大柔性机翼的极限环颤振特性。研究表明:适用于大柔性机翼完整的非线性气动弹性建模需要考虑机翼结构大变形和非定常气动力动态失速等非线性因素;弯曲变形可降低临界极限环颤振速度的15%以上,而前移弹性轴能够有效的提高临界极限环颤振速度;所提出的非线性气动弹性求解方法具有较好的精度和效率,满足大柔性机翼非线性气动弹性的求解需求。
大展絃比大柔性機翼在氣動載荷的作用下,產生較大的彈性變形,其慣性特性、剛度特性、動氣動彈性特性等亦髮生較大改變,常規的線性氣動彈性分析方法不再適用。基于 Co-rotational(CR)理論,推導瞭機翼變形後的切線剛度矩陣和質量矩陣,建立瞭攷慮幾何非線性效應的大柔性機翼結構動力學模型;耦閤改進的 ONERA 非線性非定常氣動力模型,提齣瞭一種適用于大柔性機翼的非線性氣動彈性求解方法。採用 Newmark 直接數值積分法及鬆耦閤技術在時域內對氣動彈性運動方程進行求解,對所提齣的非線性氣動彈性求解方法的正確性和精度進行瞭驗證,併研究瞭大柔性機翼的極限環顫振特性。研究錶明:適用于大柔性機翼完整的非線性氣動彈性建模需要攷慮機翼結構大變形和非定常氣動力動態失速等非線性因素;彎麯變形可降低臨界極限環顫振速度的15%以上,而前移彈性軸能夠有效的提高臨界極限環顫振速度;所提齣的非線性氣動彈性求解方法具有較好的精度和效率,滿足大柔性機翼非線性氣動彈性的求解需求。
대전현비대유성궤익재기동재하적작용하,산생교대적탄성변형,기관성특성、강도특성、동기동탄성특성등역발생교대개변,상규적선성기동탄성분석방법불재괄용。기우 Co-rotational(CR)이론,추도료궤익변형후적절선강도구진화질량구진,건립료고필궤하비선성효응적대유성궤익결구동역학모형;우합개진적 ONERA 비선성비정상기동력모형,제출료일충괄용우대유성궤익적비선성기동탄성구해방법。채용 Newmark 직접수치적분법급송우합기술재시역내대기동탄성운동방정진행구해,대소제출적비선성기동탄성구해방법적정학성화정도진행료험증,병연구료대유성궤익적겁한배전진특성。연구표명:괄용우대유성궤익완정적비선성기동탄성건모수요고필궤익결구대변형화비정상기동력동태실속등비선성인소;만곡변형가강저림계겁한배전진속도적15%이상,이전이탄성축능구유효적제고림계겁한배전진속도;소제출적비선성기동탄성구해방법구유교호적정도화효솔,만족대유성궤익비선성기동탄성적구해수구。
Very flexible wings under aerodynamic loads tend to produce larger deformation,it results in significant changes in inertial and stiffness characteristics,and dynamic aeroelastic features,the linear aeroelastic analysis method is no longer applicable.Here,based on the co-rotational(CR)theory,the tangent stiffness matrix and mass matrix of a wing after deformation were derived,the structural dynamic model of very flexible wings considering geometric nonlinearity was then established.Coupled with ONERA dynamic stall model,an efficient method to solve nonlinear aeroelasticity of very flexible wings was proposed.Using Newmark direct integration method and loose coupled algorithms,a numerical procedure for solving nonlinear aeroelastic dynamic equations was presented,and the efficiency and precision of the method were verified through tests.The results showed that structural and aerodynamic nonlinearities should be considered for complete nonlinear dynamic aeroelastic simulations of very flexible wings;the wing's critical limit cycle oscillation speed decreases 15% or more due to its bending deformation,but it increases through shifting forward the wing's elastic axis;the proposed method has a good precision and efficiency,and meets requirements of nonlinear aeroelastic analysis of very flexible wings.