煤炭技术
煤炭技術
매탄기술
Coal Technology
2015年
11期
105-107
,共3页
邱梅%施龙青%韩进%滕超%景行
邱梅%施龍青%韓進%滕超%景行
구매%시룡청%한진%등초%경행
小断层预测%灰色关联分析%主成分分析%Elman神经网络
小斷層預測%灰色關聯分析%主成分分析%Elman神經網絡
소단층예측%회색관련분석%주성분분석%Elman신경망락
prediction of small faults%grey correlation analysis%principal component analysis%Elman neural network
针对煤层小断层发育的复杂性及其预测参数间的相关性,提出了基于主成分分析(PCA)与Elman网络的煤层小断层预测方法。该方法首先利用灰色关联分析确定小断层密度预测参数,然后利用PCA 降维提取主成分,消除参数间的相关性,最后以主成分为输入样本,建立Elman网络预测模型。应用实例表明,煤层小断层PCA-Elman预测模型的预测效果较好,平均预测精度达94.1%。
針對煤層小斷層髮育的複雜性及其預測參數間的相關性,提齣瞭基于主成分分析(PCA)與Elman網絡的煤層小斷層預測方法。該方法首先利用灰色關聯分析確定小斷層密度預測參數,然後利用PCA 降維提取主成分,消除參數間的相關性,最後以主成分為輸入樣本,建立Elman網絡預測模型。應用實例錶明,煤層小斷層PCA-Elman預測模型的預測效果較好,平均預測精度達94.1%。
침대매층소단층발육적복잡성급기예측삼수간적상관성,제출료기우주성분분석(PCA)여Elman망락적매층소단층예측방법。해방법수선이용회색관련분석학정소단층밀도예측삼수,연후이용PCA 강유제취주성분,소제삼수간적상관성,최후이주성분위수입양본,건립Elman망락예측모형。응용실례표명,매층소단층PCA-Elman예측모형적예측효과교호,평균예측정도체94.1%。
Aimed at the complexity of the small faults in coal seams and the correlations among small faults prediction parameters, puts forward a method based on principal component analysis (PCA) and Elman neural network model for predicting the small faults. In this model, the prediction parameters were determined by using grey correlation analysis, and then principle component analysis was used to eliminate the correlations of the prediction parameters, the prediction model of small fault density was finally built through taking the results of PCA as inputs of the Elman neural network. The research result shows that the PCA- Elman neural network model for predicting small fault density has a nice prediction accuracy,the average prediction accuracy reaches 94.1%.