现代电子技术
現代電子技術
현대전자기술
Modern Electronics Technique
2015年
21期
113-117
,共5页
魏全增%陈机林%高强%王超
魏全增%陳機林%高彊%王超
위전증%진궤림%고강%왕초
电动负载模拟器%RBF神经网络%遗传算法%多余力矩
電動負載模擬器%RBF神經網絡%遺傳算法%多餘力矩
전동부재모의기%RBF신경망락%유전산법%다여력구
electric-driven load simulator%RBF neural network%genetic algorithm%extra torque
针对炮控系统电动负载模拟器存在的摩擦、间隙、弹性形变、对象参数时变和位置扰动等复杂非线性,传统的控制方法难以得到良好的动静态性能指标.结合电动负载模拟器系统组成和工作原理,建立了加载数学模型,利用炮控系统位置控制信号进行前馈补偿,设计了RBF神经网络控制器,并采用改进遗传算法对控制器的权值、节点和中心矢量等参数进行优化.实验结果表明:该控制策略能够有效抑制多余力矩,保证了系统静、动态加载时的控制精度和稳定性.
針對砲控繫統電動負載模擬器存在的摩抆、間隙、彈性形變、對象參數時變和位置擾動等複雜非線性,傳統的控製方法難以得到良好的動靜態性能指標.結閤電動負載模擬器繫統組成和工作原理,建立瞭加載數學模型,利用砲控繫統位置控製信號進行前饋補償,設計瞭RBF神經網絡控製器,併採用改進遺傳算法對控製器的權值、節點和中心矢量等參數進行優化.實驗結果錶明:該控製策略能夠有效抑製多餘力矩,保證瞭繫統靜、動態加載時的控製精度和穩定性.
침대포공계통전동부재모의기존재적마찰、간극、탄성형변、대상삼수시변화위치우동등복잡비선성,전통적공제방법난이득도량호적동정태성능지표.결합전동부재모의기계통조성화공작원리,건립료가재수학모형,이용포공계통위치공제신호진행전궤보상,설계료RBF신경망락공제기,병채용개진유전산법대공제기적권치、절점화중심시량등삼수진행우화.실험결과표명:해공제책략능구유효억제다여력구,보증료계통정、동태가재시적공제정도화은정성.
For the complex nonlinearities of friction,clearance,elastic deformation,time-varying performance of the target parameters and position disturbance are existed in electric-driven load simulator of the gun control system,the conventional con-trol method can′t achieve the good static and dynamic performance indexes. In combination with the system composition and working principle of the electric-driven load simulator,the loading mathematical model was established. The RBF neural net-work controller(RBFNNC)was designed by using the position control signal of the gun control system to conduct with feedfor-ward compensation. The parameters of the controller′s weight,nodes and center vector are optimized by the improved genetic al-gorithm. The experimental results show that this control strategy can restrain the extra torque effectively,and ensure the control precision and stability when the system is loading in static or dynamic state.