浙江师范大学学报(自然科学版)
浙江師範大學學報(自然科學版)
절강사범대학학보(자연과학판)
Journal of Zhejiang Normal University(Natural Sciences)
2015年
4期
379-386
,共8页
分数阶拉普拉斯算子%变分法%临界非线性%对称解
分數階拉普拉斯算子%變分法%臨界非線性%對稱解
분수계랍보랍사산자%변분법%림계비선성%대칭해
fractional Laplacian%variational method%critical nonlinearity%symmetry solutions
研究了一类分数阶拉普拉斯方程(-Δ)su +u =|u|2*(s)-2u +f(x,u), x∈RN解的存在性问题.其中,2*(s)=2N/(N-2s),N>2s,s∈(0,1),函数f:RN ×R→R对于u次临界增长.运用变分方法建立了方程对称解的存在性定理.
研究瞭一類分數階拉普拉斯方程(-Δ)su +u =|u|2*(s)-2u +f(x,u), x∈RN解的存在性問題.其中,2*(s)=2N/(N-2s),N>2s,s∈(0,1),函數f:RN ×R→R對于u次臨界增長.運用變分方法建立瞭方程對稱解的存在性定理.
연구료일류분수계랍보랍사방정(-Δ)su +u =|u|2*(s)-2u +f(x,u), x∈RN해적존재성문제.기중,2*(s)=2N/(N-2s),N>2s,s∈(0,1),함수f:RN ×R→R대우u차림계증장.운용변분방법건립료방정대칭해적존재성정리.
The existence of solutions for the following nonlocal fractional Laplacian equation was studied,(-Δ)su +u =|u|2*(s)-2u +f(x,u),x∈RN with critical exponent 2*(s)=2N/(N-2s), N>2s and s∈(0,1).f:RN×R→R had subcritical growth with respect to u.The existence of symmetry solutions for the equation was obtained by using variational method.