中华临床感染病杂志
中華臨床感染病雜誌
중화림상감염병잡지
Chinese Journal of Clinical Infectious Diseases
2015年
5期
429-435
,共7页
程庆林%丁华%孙昼%考庆君%杨旭辉%黄仁杰%温圆圆%王婧%谢立
程慶林%丁華%孫晝%攷慶君%楊旭輝%黃仁傑%溫圓圓%王婧%謝立
정경림%정화%손주%고경군%양욱휘%황인걸%온원원%왕청%사립
禽流感%流感病毒A型,H7N9亚型%列线图%转归%危险因素
禽流感%流感病毒A型,H7N9亞型%列線圖%轉歸%危險因素
금류감%류감병독A형,H7N9아형%렬선도%전귀%위험인소
Influenza in birds%Influenza A virus,H7N9 subtype%Nomograms%Outcome%Risk factors
目的:应用列线图模型构建人感染H7 N9禽流感死亡风险预测的评估模型。方法采用分层随机抽样的方法选取浙江省人感染H7 N9禽流感定点治疗医院2013年3月至2015年3月收治的102例人感染H7N9禽流感确诊病例为研究对象,使用调查表对患者的流行病学资料、临床资料进行回顾性分析。采用单因素和多因素Logistic逐步回归分析方法寻找与H7N9禽流感死亡风险相关的独立危险因素,并使用列线图建立人感染H7 N9禽流感死亡风险的预测评估模型,采用一致系数(C-index)和受试者工作特征曲线(ROC)评价模型的预测精度。结果多因素Logistic逐步回归分析发现,年龄≥60岁(χ2=3.98,OR=2.99,95%CI:1.05~9.21)、中性粒细胞百分比高于正常(χ2=6.66,OR=5.06,95% CI:1.56~18.83)、C-反应蛋白≥120 mg/L(χ2=8.63,OR=5.15,95% CI:1.79~16.31)、手卫生差(χ2=6.83,OR=10.29,95%CI:2.18~81.49)和潜伏期≤5 d(χ2=7.23, OR=4.75,95%CI:1.59~15.80)为死亡的独立危险因素(P值均<0.05)。在Logistic回归模型基础上绘制的列线图模型包含的这5个独立危险因子的影响等级和评分依次为,手卫生差:1级,100.0分;CRP≥120 mg/L:2级,76.5分;中性粒细胞百分比高于正常:3级,70.5分;潜伏期≤5 d:4级,62.0分;年龄≥60岁:5级,51.0分。列线图模型的C-index、ROC曲线下面积分别为0.833和0.817,模型拟合的效果较好。结论列线图模型能有效地进行人感染H7N9禽流感死亡风险的个体化预测和评估。
目的:應用列線圖模型構建人感染H7 N9禽流感死亡風險預測的評估模型。方法採用分層隨機抽樣的方法選取浙江省人感染H7 N9禽流感定點治療醫院2013年3月至2015年3月收治的102例人感染H7N9禽流感確診病例為研究對象,使用調查錶對患者的流行病學資料、臨床資料進行迴顧性分析。採用單因素和多因素Logistic逐步迴歸分析方法尋找與H7N9禽流感死亡風險相關的獨立危險因素,併使用列線圖建立人感染H7 N9禽流感死亡風險的預測評估模型,採用一緻繫數(C-index)和受試者工作特徵麯線(ROC)評價模型的預測精度。結果多因素Logistic逐步迴歸分析髮現,年齡≥60歲(χ2=3.98,OR=2.99,95%CI:1.05~9.21)、中性粒細胞百分比高于正常(χ2=6.66,OR=5.06,95% CI:1.56~18.83)、C-反應蛋白≥120 mg/L(χ2=8.63,OR=5.15,95% CI:1.79~16.31)、手衛生差(χ2=6.83,OR=10.29,95%CI:2.18~81.49)和潛伏期≤5 d(χ2=7.23, OR=4.75,95%CI:1.59~15.80)為死亡的獨立危險因素(P值均<0.05)。在Logistic迴歸模型基礎上繪製的列線圖模型包含的這5箇獨立危險因子的影響等級和評分依次為,手衛生差:1級,100.0分;CRP≥120 mg/L:2級,76.5分;中性粒細胞百分比高于正常:3級,70.5分;潛伏期≤5 d:4級,62.0分;年齡≥60歲:5級,51.0分。列線圖模型的C-index、ROC麯線下麵積分彆為0.833和0.817,模型擬閤的效果較好。結論列線圖模型能有效地進行人感染H7N9禽流感死亡風險的箇體化預測和評估。
목적:응용렬선도모형구건인감염H7 N9금류감사망풍험예측적평고모형。방법채용분층수궤추양적방법선취절강성인감염H7 N9금류감정점치료의원2013년3월지2015년3월수치적102례인감염H7N9금류감학진병례위연구대상,사용조사표대환자적류행병학자료、림상자료진행회고성분석。채용단인소화다인소Logistic축보회귀분석방법심조여H7N9금류감사망풍험상관적독립위험인소,병사용렬선도건립인감염H7 N9금류감사망풍험적예측평고모형,채용일치계수(C-index)화수시자공작특정곡선(ROC)평개모형적예측정도。결과다인소Logistic축보회귀분석발현,년령≥60세(χ2=3.98,OR=2.99,95%CI:1.05~9.21)、중성립세포백분비고우정상(χ2=6.66,OR=5.06,95% CI:1.56~18.83)、C-반응단백≥120 mg/L(χ2=8.63,OR=5.15,95% CI:1.79~16.31)、수위생차(χ2=6.83,OR=10.29,95%CI:2.18~81.49)화잠복기≤5 d(χ2=7.23, OR=4.75,95%CI:1.59~15.80)위사망적독립위험인소(P치균<0.05)。재Logistic회귀모형기출상회제적렬선도모형포함적저5개독립위험인자적영향등급화평분의차위,수위생차:1급,100.0분;CRP≥120 mg/L:2급,76.5분;중성립세포백분비고우정상:3급,70.5분;잠복기≤5 d:4급,62.0분;년령≥60세:5급,51.0분。렬선도모형적C-index、ROC곡선하면적분별위0.833화0.817,모형의합적효과교호。결론렬선도모형능유효지진행인감염H7N9금류감사망풍험적개체화예측화평고。
Objective To develop and validate a mortality risk prediction model for patients infected with avian influenza A H 7N9 virus.Methods A stratified and random sampling method was adopted for selection of subjects .A total of 102 patients infected with avian influenza A H7N9 virus, who were admitted to the designated hospitals in Zhejiang Province during March 2013 and March 2015, were enrolled.Standard questionnaires were used to collect data about demographic , epidemiologic and clinical characteristics , and the data were retrospectively reviewed . Univariate analysis and stepwise logistic regression analysis were used to identify the mortality risk factors of patients infected with avian influenza A H7N9 virus, and nomogram was applied to develop the risk prediction model .The accuracy of the prediction model was assessed using Concordance index (C-index) and receiver operating characteristic (ROC) curve. Results Stepwise multiple logistic regression analysis showed that age ≥60 years (χ2 =3.98, OR=2.99, 95%CI:1.05-9.21, P<0.05), increased initial neutrophil count (χ2 =6.66,OR=5.06, 95%CI:1.56-18.83, P<0.05), C-reactive protein≥120mg/L (χ2 =8.63, OR=5.15, 95%CI:1.79-16.31, P<0. 01), poor hand hygiene (χ2 =6.83, OR =10.29, 95%CI:2.18-81.49, P <0.01) and 5 days of incubation period or shorter (χ2 =7.23, OR=4.75, 95%CI:1.59-15.80, P<0.01) were independent risk factors for mortality of patients .Based on the above study , a risk prediction model of nomogram was developed.Poor hand hygiene (grade A, 100.0 points) ranked on the top of all risk factors, followed by C-reactive protein≥120 mg/L (grade B, 76.5 points), increased initial neutrophil count (grade C, 70.5 points), 5 days of incubation period or shorter (grade D, 62.0 points) and age ≥60 years (grade E, 51.0 points).The C-index and the area under the curve were 0.833 and 0.817 for the nomogram model , respectively;and the nomogram model fitted well .Conclusion Nomogram model can effectively predict and estimate the risk of death for patients infected with avian influenza A H 7N9 virus.