计算机工程与设计
計算機工程與設計
계산궤공정여설계
Computer Engineering and Design
2015年
11期
2902-2905,2947
,共5页
俞秀婷%覃锡忠%贾振红%傅云瑾%曹传玲%常春
俞秀婷%覃錫忠%賈振紅%傅雲瑾%曹傳玲%常春
유수정%담석충%가진홍%부운근%조전령%상춘
粒子群算法%灰色神经网络%加速动量%速度阈值%话务量预测
粒子群算法%灰色神經網絡%加速動量%速度閾值%話務量預測
입자군산법%회색신경망락%가속동량%속도역치%화무량예측
particle swarm optimization%gray neural network%accelerating momentum%speed threshold%traffic forecast
为解决灰色神经网络模型中参数不易确定的问题,提出改进的粒子群(IPSO )算法,寻找灰色神经网络的参数最优解。在寻优过程中引入一个速度阈值,当粒子的飞行速度小于给定阈值时,给粒子施加一个加速动量,重新初始化粒子速度及位置。用训练好的网络预测两个地区的忙时话务量,与未改进的粒子群算法优化灰色神经网络(PSO‐GNN )模型、灰色神经网络(GNN)模型、反向传播神经网络(BPNN)模型的预测结果比较,比较结果表明,改进的粒子群算法优化灰色神经网络(IPSO‐GNN)模型提高了预测结果的精度。
為解決灰色神經網絡模型中參數不易確定的問題,提齣改進的粒子群(IPSO )算法,尋找灰色神經網絡的參數最優解。在尋優過程中引入一箇速度閾值,噹粒子的飛行速度小于給定閾值時,給粒子施加一箇加速動量,重新初始化粒子速度及位置。用訓練好的網絡預測兩箇地區的忙時話務量,與未改進的粒子群算法優化灰色神經網絡(PSO‐GNN )模型、灰色神經網絡(GNN)模型、反嚮傳播神經網絡(BPNN)模型的預測結果比較,比較結果錶明,改進的粒子群算法優化灰色神經網絡(IPSO‐GNN)模型提高瞭預測結果的精度。
위해결회색신경망락모형중삼수불역학정적문제,제출개진적입자군(IPSO )산법,심조회색신경망락적삼수최우해。재심우과정중인입일개속도역치,당입자적비행속도소우급정역치시,급입자시가일개가속동량,중신초시화입자속도급위치。용훈련호적망락예측량개지구적망시화무량,여미개진적입자군산법우화회색신경망락(PSO‐GNN )모형、회색신경망락(GNN)모형、반향전파신경망락(BPNN)모형적예측결과비교,비교결과표명,개진적입자군산법우화회색신경망락(IPSO‐GNN)모형제고료예측결과적정도。
To solve the problem that the parameters in grey neural network are difficult to determine ,the improved particle swarm algorithm was employed to search the optimums by the introduction of a threshold of velocity .When the particle velocity was less than the threshold ,an accelerated momentum was applied on the particles to reinitialize the particle velocity and posi‐tion .The proposed approach was used to predict the busy telephone traffic of two regions ,and the forecasting results were com‐pared with those of GNN ,PSO‐GNN and BPNN .The results show the high prediction accuracy of the proposed algorithm .