石油化工
石油化工
석유화공
Petrochemical Technology
2015年
11期
1322-1328
,共7页
林少波%方锋猛%孙钰铭%隋志军%朱贻安%李平
林少波%方鋒猛%孫鈺銘%隋誌軍%硃貽安%李平
림소파%방봉맹%손옥명%수지군%주이안%리평
丙烷%丙烯%氧气%脱氢%热解%不锈钢反应器
丙烷%丙烯%氧氣%脫氫%熱解%不鏽鋼反應器
병완%병희%양기%탈경%열해%불수강반응기
propane%propylene%oxygen%dehydrogenation%pyrolysis%stainless steel reactor
采用不锈钢空管反应器,在350~700℃时测定不同氧加入量下丙烷及丙烯的热解转化率和产物分布。实验结果表明,受不锈钢管器壁催化作用的影响,低温时丙烷和丙烯主要发生完全氧化反应,氧转化率可达100%,CO2的生成量取决于氧加入量;温度高于650℃时,丙烷和丙烯的气相自由基反应显现,经部分氧化和无氧热解产生的H2、CO及烃类物质增多;氧加入促进了丙烷和丙烯的热解转化,但对高温时丙烷生成丙烯的选择性不利;含氧气氛中丙烯的自由基反应能力仍弱于丙烷。不锈钢管器壁的污染影响实验表明,器壁材料的碎片化以及焦炭类物质的存在,导致了高温时丙烯完全氧化能力大幅下降,部分氧化以及深度脱氢性能显著增强,氧加入量高时丙烯可全部转化。
採用不鏽鋼空管反應器,在350~700℃時測定不同氧加入量下丙烷及丙烯的熱解轉化率和產物分佈。實驗結果錶明,受不鏽鋼管器壁催化作用的影響,低溫時丙烷和丙烯主要髮生完全氧化反應,氧轉化率可達100%,CO2的生成量取決于氧加入量;溫度高于650℃時,丙烷和丙烯的氣相自由基反應顯現,經部分氧化和無氧熱解產生的H2、CO及烴類物質增多;氧加入促進瞭丙烷和丙烯的熱解轉化,但對高溫時丙烷生成丙烯的選擇性不利;含氧氣氛中丙烯的自由基反應能力仍弱于丙烷。不鏽鋼管器壁的汙染影響實驗錶明,器壁材料的碎片化以及焦炭類物質的存在,導緻瞭高溫時丙烯完全氧化能力大幅下降,部分氧化以及深度脫氫性能顯著增彊,氧加入量高時丙烯可全部轉化。
채용불수강공관반응기,재350~700℃시측정불동양가입량하병완급병희적열해전화솔화산물분포。실험결과표명,수불수강관기벽최화작용적영향,저온시병완화병희주요발생완전양화반응,양전화솔가체100%,CO2적생성량취결우양가입량;온도고우650℃시,병완화병희적기상자유기반응현현,경부분양화화무양열해산생적H2、CO급경류물질증다;양가입촉진료병완화병희적열해전화,단대고온시병완생성병희적선택성불리;함양기분중병희적자유기반응능력잉약우병완。불수강관기벽적오염영향실험표명,기벽재료적쇄편화이급초탄류물질적존재,도치료고온시병희완전양화능력대폭하강,부분양화이급심도탈경성능현저증강,양가입량고시병희가전부전화。
The pyrolysis of C3H8 and C3H6 with different addition of O2 in a tubular stainless steel reactor was investigated in the temperature range of 350-700℃. The results showed that, at low temperature,the wall surface of the reactor exhibited its catalysis for the combustion of both C3H8 and C3H6,the conversion of O2 could reach 100% and the generation of CO2 entirely depended on the addition of O2. The generation of both CO and H2 appeared at higher than 650℃,which enhanced the partial oxidation and the O2-free pyrolysis of C3H8 and C3H6 based on the free-radical reaction mechanism. The presence of O2 could promote the pyrolysis of C3H8 and C3H6,but was not beneficial to the selectivity to C3H6 from the C3H8 pyrolysis at high temperature. The effects of the contaminant of the reactor wall on the oxidative pyrolysis of C3H6 were investigated. It was revealed that the complete combustion of C3H6 was severely weakened while both the partial oxidation and the deep-dehydrogenation of C3H6 were significantly strengthened at high temperature after the reactor wall was contaminated.