石油化工
石油化工
석유화공
Petrochemical Technology
2015年
11期
1288-1294
,共7页
张路%姜浩锡%赵静%李永辉
張路%薑浩錫%趙靜%李永輝
장로%강호석%조정%리영휘
锰-铁复合氧化物%选择性催化还原%焙烧温度%超临界抗溶剂法%一氧化氮%氮气
錳-鐵複閤氧化物%選擇性催化還原%焙燒溫度%超臨界抗溶劑法%一氧化氮%氮氣
맹-철복합양화물%선택성최화환원%배소온도%초림계항용제법%일양화담%담기
manganese-iron composite oxide%selective catalytic reduction%calcination temperature%supercritical anti-solvent process%nitric oxide%nitrogen
以Mn(acac)3和Fe(acac)3(质量比1∶1)为原料,采用超临界抗溶剂法制备了Mn-Fe复合氧化物前体,在适宜的温度下焙烧后得到新型MnOx-FeOy纳米球形催化剂。通过TG-DTG、N2吸附-脱附、XRD、XPS、NH3-TPD表征和活性评价,考察了焙烧过程对MnOx-FeOy催化剂的结构、活性组分的组成及其选择性催化还原(SCR)反应性能的影响。实验结果表明,前体的焙烧过程促进了催化剂晶体结构的转变,对Mn-Fe固溶体的形成具有重要作用。当焙烧温度为500℃时,所制备的MnOx-FeOy催化剂表面B酸和L酸中心的数量最多、SCR反应性能最好,在原料气(NO(φ=1×10-3)、NH3(φ=1×10-3)、O2(φ=2%)和Ar(平衡气))空速50000 h-1、反应温度180~260℃、常压条件下,NO的转化率保持在92%以上,最高达97%,且N2选择性为100%。
以Mn(acac)3和Fe(acac)3(質量比1∶1)為原料,採用超臨界抗溶劑法製備瞭Mn-Fe複閤氧化物前體,在適宜的溫度下焙燒後得到新型MnOx-FeOy納米毬形催化劑。通過TG-DTG、N2吸附-脫附、XRD、XPS、NH3-TPD錶徵和活性評價,攷察瞭焙燒過程對MnOx-FeOy催化劑的結構、活性組分的組成及其選擇性催化還原(SCR)反應性能的影響。實驗結果錶明,前體的焙燒過程促進瞭催化劑晶體結構的轉變,對Mn-Fe固溶體的形成具有重要作用。噹焙燒溫度為500℃時,所製備的MnOx-FeOy催化劑錶麵B痠和L痠中心的數量最多、SCR反應性能最好,在原料氣(NO(φ=1×10-3)、NH3(φ=1×10-3)、O2(φ=2%)和Ar(平衡氣))空速50000 h-1、反應溫度180~260℃、常壓條件下,NO的轉化率保持在92%以上,最高達97%,且N2選擇性為100%。
이Mn(acac)3화Fe(acac)3(질량비1∶1)위원료,채용초림계항용제법제비료Mn-Fe복합양화물전체,재괄의적온도하배소후득도신형MnOx-FeOy납미구형최화제。통과TG-DTG、N2흡부-탈부、XRD、XPS、NH3-TPD표정화활성평개,고찰료배소과정대MnOx-FeOy최화제적결구、활성조분적조성급기선택성최화환원(SCR)반응성능적영향。실험결과표명,전체적배소과정촉진료최화제정체결구적전변,대Mn-Fe고용체적형성구유중요작용。당배소온도위500℃시,소제비적MnOx-FeOy최화제표면B산화L산중심적수량최다、SCR반응성능최호,재원료기(NO(φ=1×10-3)、NH3(φ=1×10-3)、O2(φ=2%)화Ar(평형기))공속50000 h-1、반응온도180~260℃、상압조건하,NO적전화솔보지재92%이상,최고체97%,차N2선택성위100%。
MnOx-FeOy composite oxide precursor was prepared from Mn(acac)3 and Fe(acac)3 with a mass ratio of 1∶1 by supercritical anti-solvent method,and then MnOx-FeOy n anosphere catalysts were prepared through the calcination of the precursor at diff erent temperature. The catalysts were characterized by means of TG-DTG,N2 adsorption-desorption,XRD,XPS and NH3-TPD, and used in the selective catalytic reduction of NO. The infl uences of the calcination process on the structure,composition and activity of the catalysts were investigated. The results indicated that the calcination promoted the crystal structure transformation and the solid solution formation. At the calcination temperature 500℃ and mass ratio of Mn(acac)3 to Fe(acac)3 1∶1,there were more Br?nsted and Lewis acid sites on the surface of the prepared catalyst, so its reduction performance was better. Under the conditions of GHSV 50 000 h-1 of feed gas withφ(NO) 1×10- 3,φ(NH3) 1×10-3,φ(O2) 2% an d Ar(balance gas),180-260℃ and atmospheric pressure,the conversion of NO and the selectivity to N2 could reach more than 92% and almost 100% respe ctively,with the highest conversion of 97%.