北京工业大学学报
北京工業大學學報
북경공업대학학보
Journal of Beijing University of Technology
2015年
11期
1620-1626,1755
,共8页
宋轶民%翟亚普%孙涛%李金和%张嘉滕
宋軼民%翟亞普%孫濤%李金和%張嘉滕
송질민%적아보%손도%리금화%장가등
并联机构%误差建模%区间分析%灵敏度分析%精度设计%蒙特卡洛仿真
併聯機構%誤差建模%區間分析%靈敏度分析%精度設計%矇特卡洛倣真
병련궤구%오차건모%구간분석%령민도분석%정도설계%몽특잡락방진
parallel mechanism%error modeling%interval analysis%sensitivity analysis%accuracy design%Monte Carlo simulation
面向大型结构件调姿、天线跟踪及快速定位等应用需求,研究三转动自由度并联机构3-PSU&S的精度设计方法. 首先,利用螺旋理论建立该机构的误差映射模型,并将影响机构末端姿态精度的几何误差分离为可补偿误差与不可补偿误差2类. 其次,借助区间分析理论,提出不可补偿误差的灵敏度指标,并通过全域灵敏度分析揭示各项不可补偿误差对机构末端姿态精度的影响规律. 然后,以灵敏度指标值为分配权重,建立各项不可补偿误差的优化分配模型,在给定精度约束下,借助遗传算法将难以实现的不可补偿误差的公差值松弛至最大可行区间. 最后,通过蒙特卡洛仿真验证了所提出精度设计方法的有效性.
麵嚮大型結構件調姿、天線跟蹤及快速定位等應用需求,研究三轉動自由度併聯機構3-PSU&S的精度設計方法. 首先,利用螺鏇理論建立該機構的誤差映射模型,併將影響機構末耑姿態精度的幾何誤差分離為可補償誤差與不可補償誤差2類. 其次,藉助區間分析理論,提齣不可補償誤差的靈敏度指標,併通過全域靈敏度分析揭示各項不可補償誤差對機構末耑姿態精度的影響規律. 然後,以靈敏度指標值為分配權重,建立各項不可補償誤差的優化分配模型,在給定精度約束下,藉助遺傳算法將難以實現的不可補償誤差的公差值鬆弛至最大可行區間. 最後,通過矇特卡洛倣真驗證瞭所提齣精度設計方法的有效性.
면향대형결구건조자、천선근종급쾌속정위등응용수구,연구삼전동자유도병련궤구3-PSU&S적정도설계방법. 수선,이용라선이론건립해궤구적오차영사모형,병장영향궤구말단자태정도적궤하오차분리위가보상오차여불가보상오차2류. 기차,차조구간분석이론,제출불가보상오차적령민도지표,병통과전역령민도분석게시각항불가보상오차대궤구말단자태정도적영향규률. 연후,이령민도지표치위분배권중,건립각항불가보상오차적우화분배모형,재급정정도약속하,차조유전산법장난이실현적불가보상오차적공차치송이지최대가행구간. 최후,통과몽특잡락방진험증료소제출정도설계방법적유효성.
The accuracy design of a parallel mechanism with three rotational degrees of freedom was studied, which might find its applications in large components pose-adjusting, satellite antenna tracking and high-speed positioning. Firstly, an error model of the mechanism was established by means of the screw theory, in which the compensable and non-compensable errors associated with parts were separated effectively. In the light of interval analysis theory, an appropriate sensitivity index was proposed and utilized for evaluating the influences of non-compensable errors with respect to pose errors of the moving platform. Based upon the sensitivity index, an accuracy synthesis problem subject to accuracy constraints was solved by genetic algorithms, whose objective was to maximize feasible intervals of design variables, ie, the non-compensable errors. Finally, the accuracy design method was validated through the Monte Carlo simulation.