国防科技大学学报
國防科技大學學報
국방과기대학학보
Journal of National University of Defense Technology
2015年
5期
110-115
,共6页
精度换算%截尾正态分布%最大值指标
精度換算%截尾正態分佈%最大值指標
정도환산%절미정태분포%최대치지표
precision conversion%truncated normal distribution%maximum-error specification
提出了面向最大值指标的截尾正态分布精度换算方法,为最大值指标与常用精度指标间的精度换算以及真值测量系统精度指标的确定提供了参考依据。该方法假设系统输出序列中各观测点的合格概率服从对数截尾正态分布;根据给定最大值指标的置信水平及序列样本量,证明并推导了截尾正态分布之截尾上限、截尾下限、均值及标准偏差的计算公式,导出了最大值精度指标与1σ等常用精度指标间的换算关系;结合精密仪器有关理论给出了最大值指标下真值测量系统精度指标的确定方法。实例应用的实验结果表明,该方法是可行的。
提齣瞭麵嚮最大值指標的截尾正態分佈精度換算方法,為最大值指標與常用精度指標間的精度換算以及真值測量繫統精度指標的確定提供瞭參攷依據。該方法假設繫統輸齣序列中各觀測點的閤格概率服從對數截尾正態分佈;根據給定最大值指標的置信水平及序列樣本量,證明併推導瞭截尾正態分佈之截尾上限、截尾下限、均值及標準偏差的計算公式,導齣瞭最大值精度指標與1σ等常用精度指標間的換算關繫;結閤精密儀器有關理論給齣瞭最大值指標下真值測量繫統精度指標的確定方法。實例應用的實驗結果錶明,該方法是可行的。
제출료면향최대치지표적절미정태분포정도환산방법,위최대치지표여상용정도지표간적정도환산이급진치측량계통정도지표적학정제공료삼고의거。해방법가설계통수출서렬중각관측점적합격개솔복종대수절미정태분포;근거급정최대치지표적치신수평급서렬양본량,증명병추도료절미정태분포지절미상한、절미하한、균치급표준편차적계산공식,도출료최대치정도지표여1σ등상용정도지표간적환산관계;결합정밀의기유관이론급출료최대치지표하진치측량계통정도지표적학정방법。실례응용적실험결과표명,해방법시가행적。
A precision conversion methodology with truncated normal distribution theory assumption oriented to maximum-error specification was brought forward,and it could be taken as a reference frame for the precision conversion between maximum-error specification and other precision measurement specifications,so that the precision class of according true value measurement systems could be determined in advance.The method assumes that the conformity probability of the observation sequence is subjected to logarithmic truncated normal distribution;based on the aimed confidence level for maximum-error specification and the given sample size of target sequence,the calculation formulation of upper truncated limit, lower truncated limit,mean and standard deviation of the truncated normal distribution were proved and derived,thus the precision conversion relationships between maximum-error specification and other precision measurement specifications,such as 1σ,were turned out;through referring to the corresponding theories on precision instrument fields,the determination methodology for precision class of true value measurement systems under maximum-error specification was given.The application on related example cases proved the feasibility of the proposed method.