光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
Spectroscopy and Spectral Analysis
2015年
10期
2761-2766
,共6页
潘莎莎%黄富荣%肖迟%冼瑞仪%马志国
潘莎莎%黃富榮%肖遲%冼瑞儀%馬誌國
반사사%황부영%초지%승서의%마지국
化橘红%傅里叶变换衰减全反射红外光谱法(FTIR/ATR)%荧光光谱成像技术%MLP神经网络
化橘紅%傅裏葉變換衰減全反射紅外光譜法(FTIR/ATR)%熒光光譜成像技術%MLP神經網絡
화귤홍%부리협변환쇠감전반사홍외광보법(FTIR/ATR)%형광광보성상기술%MLP신경망락
Epicarpium citri grandis%Fourier transform attenuated total reflection infrared spectroscopy(FTIR/ATR)%Fluores-cence spectrum imaging%MLP neural network
为探究一种快速、可靠的化橘红检测方法,本实验分别采用傅里叶变换衰减全反射红外光谱法和荧光光谱成像技术结合多层感知器(MLP)神经网络所构建的模式识别方法,对化橘红进行鉴别,并对两种方法进行了比较。实验以81个正毛化橘红,37个其他品种橘红共118个样品为研究对象,采集所有样品的红外光谱和荧光光谱图像。根据光谱曲线中不同样品间的差异,取红外光谱中550‐1800 cm -1区段范围内的光谱数据和荧光光谱曲线中的400~720 nm区段的光谱数据进行分析,应用主成分分析法(PCA )对化橘红的光谱数据进行降维处理,再结合MLP神经网络对化橘红样品进行判别分析。实验中分别使用多元散射校正(MSC)、标准正态变量校正(SNV)、一阶导(FD)、二阶导(SD)以及Savitzky‐Golay(SG)平滑数据预处理方法,并比较他们对鉴别模型的影响。分析结果表明:利用红外光谱法(FTIR/ATR),经由Savitzky‐Golay (SG)平滑预处理得到的数据,通过隐层函数为 sigmoid的三层MLP模型,能够得到最优正毛化橘红识别率,其结果训练集和测试集的识别率都为100%;利用荧光光谱成像技术,由多元散射(M SC )预处理的结果是最理想的。经过预处理的数据,通过隐层函数为 sigmoid函数的三层 MLP模型,训练集识别率达到100%,测试集识别率达到96.7%。由此可见,衰减全反射红外光谱法(FTIR/ATR)和荧光光谱成像技术分别与MLP神经网络构建的识别模式,均可对化橘红的判别达到快速、可靠的效果。
為探究一種快速、可靠的化橘紅檢測方法,本實驗分彆採用傅裏葉變換衰減全反射紅外光譜法和熒光光譜成像技術結閤多層感知器(MLP)神經網絡所構建的模式識彆方法,對化橘紅進行鑒彆,併對兩種方法進行瞭比較。實驗以81箇正毛化橘紅,37箇其他品種橘紅共118箇樣品為研究對象,採集所有樣品的紅外光譜和熒光光譜圖像。根據光譜麯線中不同樣品間的差異,取紅外光譜中550‐1800 cm -1區段範圍內的光譜數據和熒光光譜麯線中的400~720 nm區段的光譜數據進行分析,應用主成分分析法(PCA )對化橘紅的光譜數據進行降維處理,再結閤MLP神經網絡對化橘紅樣品進行判彆分析。實驗中分彆使用多元散射校正(MSC)、標準正態變量校正(SNV)、一階導(FD)、二階導(SD)以及Savitzky‐Golay(SG)平滑數據預處理方法,併比較他們對鑒彆模型的影響。分析結果錶明:利用紅外光譜法(FTIR/ATR),經由Savitzky‐Golay (SG)平滑預處理得到的數據,通過隱層函數為 sigmoid的三層MLP模型,能夠得到最優正毛化橘紅識彆率,其結果訓練集和測試集的識彆率都為100%;利用熒光光譜成像技術,由多元散射(M SC )預處理的結果是最理想的。經過預處理的數據,通過隱層函數為 sigmoid函數的三層 MLP模型,訓練集識彆率達到100%,測試集識彆率達到96.7%。由此可見,衰減全反射紅外光譜法(FTIR/ATR)和熒光光譜成像技術分彆與MLP神經網絡構建的識彆模式,均可對化橘紅的判彆達到快速、可靠的效果。
위탐구일충쾌속、가고적화귤홍검측방법,본실험분별채용부리협변환쇠감전반사홍외광보법화형광광보성상기술결합다층감지기(MLP)신경망락소구건적모식식별방법,대화귤홍진행감별,병대량충방법진행료비교。실험이81개정모화귤홍,37개기타품충귤홍공118개양품위연구대상,채집소유양품적홍외광보화형광광보도상。근거광보곡선중불동양품간적차이,취홍외광보중550‐1800 cm -1구단범위내적광보수거화형광광보곡선중적400~720 nm구단적광보수거진행분석,응용주성분분석법(PCA )대화귤홍적광보수거진행강유처리,재결합MLP신경망락대화귤홍양품진행판별분석。실험중분별사용다원산사교정(MSC)、표준정태변량교정(SNV)、일계도(FD)、이계도(SD)이급Savitzky‐Golay(SG)평활수거예처리방법,병비교타문대감별모형적영향。분석결과표명:이용홍외광보법(FTIR/ATR),경유Savitzky‐Golay (SG)평활예처리득도적수거,통과은층함수위 sigmoid적삼층MLP모형,능구득도최우정모화귤홍식별솔,기결과훈련집화측시집적식별솔도위100%;이용형광광보성상기술,유다원산사(M SC )예처리적결과시최이상적。경과예처리적수거,통과은층함수위 sigmoid함수적삼층 MLP모형,훈련집식별솔체도100%,측시집식별솔체도96.7%。유차가견,쇠감전반사홍외광보법(FTIR/ATR)화형광광보성상기술분별여MLP신경망락구건적식별모식,균가대화귤홍적판별체도쾌속、가고적효과。
To explore rapid reliable methods for detection of Epicarpium citri grandis (ECG ) , the experiment using Fourier Transform Attenuated Total Reflection Infrared Spectroscopy (FTIR/ATR) and Fluorescence Spectrum Imaging Technology combined with Multilayer Perceptron (MLP) Neural Network pattern recognition ,for the identification of ECG ,and the two methods are compared .Infrared spectra and fluorescence spectral images of 118 samples ,81 ECG and 37 other kinds of ECG , are collected .According to the differences in tspectrum ,the spectra data in the 550~1 800 cm-1 wavenumber range and 400~720 nm wavelength are regarded as the study objects of discriminant analysis .Then principal component analysis (PCA) is ap‐plied to reduce the dimension of spectroscopic data of ECG and MLP Neural Network is used in combination to classify them . During the experiment were compared the effects of different methods of data preprocessing on the model:multiplicative scatter correction (MSC) ,standard normal variable correction(SNV) ,first‐order derivative(FD) ,second‐order derivative(SD) and Savitzky‐Golay (SG) .The results showed that :after the infrared spectra data via the Savitzky‐Golay (SG) pretreatment through the MLP Neural Network with the hidden layer function as sigmoid ,we can get the best discrimination of ECG ,the correct per‐cent of training set and testing set are both 100% .Using fluorescence spectral imaging technology ,corrected by the multiple scattering (MSC) results in the pretreatment is the most ideal .After data preprocessing ,the three layers of the MLP Neural Network of the hidden layer function as sigmoid function can get 100% correct percent of training set and 96 .7% correct percent of testing set .It was shown that the FTIR/ATR and fluorescent spectral imaging technology combined with MLP Neural Net‐work can be used for the identification study of ECG and has the advantages of rapid ,reliable effect .