中国电机工程学报
中國電機工程學報
중국전궤공정학보
Proceedings of the CSEE
2015年
21期
5577-5584
,共8页
无线电能传输%E类逆变器%有载品质因数%谐振耦合%耦合电感
無線電能傳輸%E類逆變器%有載品質因數%諧振耦閤%耦閤電感
무선전능전수%E류역변기%유재품질인수%해진우합%우합전감
wireless power transfer (WPT)%class E inverter%loaded quality factor%resonant coupling%coupling inductor
针对现有用于无线电能传输系统的 E 类逆变器存在磁元件损耗大,谐振参数容差能力低以及输出功率有限的缺点,提出了一种新颖的双路(或偶数路)E类逆变器功率合成输出的无线电能传输系统拓扑,其逆变器利用耦合电感抑制偶次谐波电流并降低有载品质因数,在谐振参数存在较大偏差时仍然可以高效运行。同时,利用磁集成方法降低了磁元件数量与损耗。系统的补偿网络基于串串谐振补偿,并利用π型跨导使得系统电压增益与负载变化无关,保证输出电压恒定。利用一台1MHz 样机验证了所提出拓扑的可行性及优良性能。样机的电压增益基本不受负载变化的影响,其E类逆变器在全负载范围内均能实现软开关,逆变器峰值效率达到了92%。
針對現有用于無線電能傳輸繫統的 E 類逆變器存在磁元件損耗大,諧振參數容差能力低以及輸齣功率有限的缺點,提齣瞭一種新穎的雙路(或偶數路)E類逆變器功率閤成輸齣的無線電能傳輸繫統拓撲,其逆變器利用耦閤電感抑製偶次諧波電流併降低有載品質因數,在諧振參數存在較大偏差時仍然可以高效運行。同時,利用磁集成方法降低瞭磁元件數量與損耗。繫統的補償網絡基于串串諧振補償,併利用π型跨導使得繫統電壓增益與負載變化無關,保證輸齣電壓恆定。利用一檯1MHz 樣機驗證瞭所提齣拓撲的可行性及優良性能。樣機的電壓增益基本不受負載變化的影響,其E類逆變器在全負載範圍內均能實現軟開關,逆變器峰值效率達到瞭92%。
침대현유용우무선전능전수계통적 E 류역변기존재자원건손모대,해진삼수용차능력저이급수출공솔유한적결점,제출료일충신영적쌍로(혹우수로)E류역변기공솔합성수출적무선전능전수계통탁복,기역변기이용우합전감억제우차해파전류병강저유재품질인수,재해진삼수존재교대편차시잉연가이고효운행。동시,이용자집성방법강저료자원건수량여손모。계통적보상망락기우천천해진보상,병이용π형과도사득계통전압증익여부재변화무관,보증수출전압항정。이용일태1MHz 양궤험증료소제출탁복적가행성급우량성능。양궤적전압증익기본불수부재변화적영향,기E류역변기재전부재범위내균능실현연개관,역변기봉치효솔체도료92%。
For the problems with traditional class E inverters, such as higher inductor losses, more sensitive to the resonant parameters and lower power limitation, a novel topology with dual (or even) class E inverters and power combination for wireless power transfer (WPT) applications was proposed. Coupled inductors were proposed to suppress the even-order harmonics currents and reduce loaded quality factor, so that the inverters can still work normally and high efficiently even with large deviations of resonant parameters. And magnetic integration of coupled inductors was proposed to reduce the numbers and losses of the magnetics. Series-series resonance compensation scheme was used for WPT system andπ-type (CLC) transconductance was used to ensure the constant output voltage and independence of voltage gain to the loads. A prototype with 1MHz operation frequency was designed and built to verify the feasibility and high performances of the proposed topology and to show that the voltage gain characteristics are independent with the loads and soft switching could be achieved at whole load ranges. The peak efficiency of the inverter reaches 92%.