图学学报
圖學學報
도학학보
Journal of Graphics
2015年
5期
763-770
,共8页
图像分割%阈值选取%非对称Tsallis交叉熵%二维直方图%分解
圖像分割%閾值選取%非對稱Tsallis交扠熵%二維直方圖%分解
도상분할%역치선취%비대칭Tsallis교차적%이유직방도%분해
image segmentation%threshold selection%asymmetric Tsallis cross entropy%two-dimensional histogram%decomposition
现有的Tsallis交叉熵能够度量图像分割前后的差异,但公式复杂,计算效率不高,据此,提出了基于分解的二维非对称Tsallis交叉熵图像阈值选取方法。首先给出了非对称Tsallis交叉熵的定义,提出了一维非对称Tsallis交叉熵阈值选取方法;然后,将其拓展到二维,推导出相应的阈值选取公式;最后,在此基础上提出了二维非对称Tsallis交叉熵阈值选取的分解算法,使求解二维非对称Tsallis交叉熵阈值法的运算转化到两个一维空间上,将计算复杂度从O(L4)降低为O(L)。大量实验结果表明,与基于混沌粒子群优化的二维Tsallis灰度熵法、二维斜分对称交叉熵法,二维斜分对称Tsallis交叉熵法等方法相比,该方法分割性能优,运行时间短,可望满足实际应用系统对分割的实时要求。
現有的Tsallis交扠熵能夠度量圖像分割前後的差異,但公式複雜,計算效率不高,據此,提齣瞭基于分解的二維非對稱Tsallis交扠熵圖像閾值選取方法。首先給齣瞭非對稱Tsallis交扠熵的定義,提齣瞭一維非對稱Tsallis交扠熵閾值選取方法;然後,將其拓展到二維,推導齣相應的閾值選取公式;最後,在此基礎上提齣瞭二維非對稱Tsallis交扠熵閾值選取的分解算法,使求解二維非對稱Tsallis交扠熵閾值法的運算轉化到兩箇一維空間上,將計算複雜度從O(L4)降低為O(L)。大量實驗結果錶明,與基于混沌粒子群優化的二維Tsallis灰度熵法、二維斜分對稱交扠熵法,二維斜分對稱Tsallis交扠熵法等方法相比,該方法分割性能優,運行時間短,可望滿足實際應用繫統對分割的實時要求。
현유적Tsallis교차적능구도량도상분할전후적차이,단공식복잡,계산효솔불고,거차,제출료기우분해적이유비대칭Tsallis교차적도상역치선취방법。수선급출료비대칭Tsallis교차적적정의,제출료일유비대칭Tsallis교차적역치선취방법;연후,장기탁전도이유,추도출상응적역치선취공식;최후,재차기출상제출료이유비대칭Tsallis교차적역치선취적분해산법,사구해이유비대칭Tsallis교차적역치법적운산전화도량개일유공간상,장계산복잡도종O(L4)강저위O(L)。대량실험결과표명,여기우혼돈입자군우화적이유Tsallis회도적법、이유사분대칭교차적법,이유사분대칭Tsallis교차적법등방법상비,해방법분할성능우,운행시간단,가망만족실제응용계통대분할적실시요구。
The existing Tsallis cross entropy can measure the difference between the original image and its segmentation result, but it has the drawback of complex formula and low computational efficiency. Thus two-dimensional asymmetric Tsallis cross entropy threshold selection method based on decomposition is proposed. Firstly, the asymmetric Tsallis cross entropy is defined and a one-dimensional threshold selection method based on the asymmetric Tsallis cross entropy is put forward. Then it is extended to the two-dimensional space, and the corresponding threshold selection formulae are derived. Finally, the decomposition algorithm of two-dimensional asymmetric Tsallis cross entropy thresholding is proposed on this basis. As a result, the computations of two-dimensional asymmetric Tsallis cross entropy thresholding method are converted into two one-dimensional spaces. The computational complexity is greatly reduced from O(L4) to O(L). A large number of experimental results show that, compared with two-dimensional maximum Tsallis gray entropy method based on chaos particle swarm optimization, symmetric cross entropy method based on two-dimensional histogram oblique segmentation, symmetric Tsallis cross entropy method based on two-dimensional histogram oblique segmentation and so on, the proposed method has superior image segmentation performance and short running time, which can meet the real-time processing requirement of segmentation in the practical application systems.