光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
Spectroscopy and Spectral Analysis
2015年
11期
3087-3091
,共5页
冷艳丹%周俊琪%张宏超%黄长水
冷豔丹%週俊琪%張宏超%黃長水
랭염단%주준기%장굉초%황장수
石墨烯%石墨烯增强拉曼散射%偶极分子%化学气相沉积
石墨烯%石墨烯增彊拉曼散射%偶極分子%化學氣相沉積
석묵희%석묵희증강랍만산사%우겁분자%화학기상침적
Graphene%Graphene-enhanced Raman scattering%Dipole molecule%Chemical vapor deposition
选用CVD制备的石墨烯作为拉曼增强的基底,以激光器波长λ=532 nm的显微拉曼光谱仪对偶极分子DREP分子的石墨烯拉曼增强效应进行了探究。通过对石墨烯上与SiO2片上DREP分子的拉曼强度的对照,发现单纯DREP/SiO2分子浓度很低时,拉曼峰基本不存在,直到达到一定浓度1×10-5 mol?L -1时,其拉曼峰才出现;随着浓度的增加,DREP分子的拉曼信号和荧光信号都增加;而DREP/Graphene/SiO2在1×10-7 mol?L -1时即出现了拉曼信号,随着浓度的增加,拉曼信号增加很快而荧光信号增加并不明显。结果表明石墨烯可实现DREP分子的拉曼增强,并能猝灭荧光背底,提高拉曼信号与荧光信号之比。对比了不同偶极矩的DREP和DR1P分子,表明偶极矩越大,其增强因子越大,增强程度越强。分析了DREP分子在石墨烯上的拉曼增强的机制。DREP分子是尾端接芘的经过改性的偶氮苯分子,其尾端的芘与石墨烯于界面处通过π—π相互作用进行电子转移,改变石墨烯的能级结构使得其发生P型掺杂,发生拉曼增强的机制是化学机制。DREP分子的石墨烯拉曼增强效应有助于我们研究石墨烯以及石墨烯表面拉曼增强机制,比如石墨烯的载流子转移,化学增强机制的原理,以及如何从电磁机制效应分离出化学机制。
選用CVD製備的石墨烯作為拉曼增彊的基底,以激光器波長λ=532 nm的顯微拉曼光譜儀對偶極分子DREP分子的石墨烯拉曼增彊效應進行瞭探究。通過對石墨烯上與SiO2片上DREP分子的拉曼彊度的對照,髮現單純DREP/SiO2分子濃度很低時,拉曼峰基本不存在,直到達到一定濃度1×10-5 mol?L -1時,其拉曼峰纔齣現;隨著濃度的增加,DREP分子的拉曼信號和熒光信號都增加;而DREP/Graphene/SiO2在1×10-7 mol?L -1時即齣現瞭拉曼信號,隨著濃度的增加,拉曼信號增加很快而熒光信號增加併不明顯。結果錶明石墨烯可實現DREP分子的拉曼增彊,併能猝滅熒光揹底,提高拉曼信號與熒光信號之比。對比瞭不同偶極矩的DREP和DR1P分子,錶明偶極矩越大,其增彊因子越大,增彊程度越彊。分析瞭DREP分子在石墨烯上的拉曼增彊的機製。DREP分子是尾耑接芘的經過改性的偶氮苯分子,其尾耑的芘與石墨烯于界麵處通過π—π相互作用進行電子轉移,改變石墨烯的能級結構使得其髮生P型摻雜,髮生拉曼增彊的機製是化學機製。DREP分子的石墨烯拉曼增彊效應有助于我們研究石墨烯以及石墨烯錶麵拉曼增彊機製,比如石墨烯的載流子轉移,化學增彊機製的原理,以及如何從電磁機製效應分離齣化學機製。
선용CVD제비적석묵희작위랍만증강적기저,이격광기파장λ=532 nm적현미랍만광보의대우겁분자DREP분자적석묵희랍만증강효응진행료탐구。통과대석묵희상여SiO2편상DREP분자적랍만강도적대조,발현단순DREP/SiO2분자농도흔저시,랍만봉기본불존재,직도체도일정농도1×10-5 mol?L -1시,기랍만봉재출현;수착농도적증가,DREP분자적랍만신호화형광신호도증가;이DREP/Graphene/SiO2재1×10-7 mol?L -1시즉출현료랍만신호,수착농도적증가,랍만신호증가흔쾌이형광신호증가병불명현。결과표명석묵희가실현DREP분자적랍만증강,병능졸멸형광배저,제고랍만신호여형광신호지비。대비료불동우겁구적DREP화DR1P분자,표명우겁구월대,기증강인자월대,증강정도월강。분석료DREP분자재석묵희상적랍만증강적궤제。DREP분자시미단접비적경과개성적우담분분자,기미단적비여석묵희우계면처통과π—π상호작용진행전자전이,개변석묵희적능급결구사득기발생P형참잡,발생랍만증강적궤제시화학궤제。DREP분자적석묵희랍만증강효응유조우아문연구석묵희이급석묵희표면랍만증강궤제,비여석묵희적재류자전이,화학증강궤제적원리,이급여하종전자궤제효응분리출화학궤제。
The CVD graphene was chosen as the Raman enhancement substrate ,graphene‐enhanced Raman scattering(GERS) of dipolar molecule DREP were explored with a laser wavelengthλ=532 nm of micro‐Raman spectroscopy .Upon comparison of the raman signal of DREP molecular latched to a graphene /SiO2 substrate and to a bare SiO2 substrate ,we found that the Raman signal of pure DREP molecule basically does not exist at low concentrations ,until it reaches a certain concentration of 1 × 10-5 mol?L -1 ,its Raman signal emerging and as the increasing of the concentration ,Raman signal and fluorescence signal all in‐crease .However ,the raman signal of DREP molecular on the grapheme occur at the concentration of 1 × 10-7 mol?L -1 and as the increasing of concentration ,the raman signal increasing quickly but the fluorescence signal is not obvious .The studies were shown that graphene can achieve the Raman signal of DREP molecule enhancement ,and can quench fluorescent backing off ,in‐crease the ratio of Raman signal and fluorescence signals .Comparing the GERS of DREP and DR1P molecules with different mo‐lecular dipole moment ,indicating that the greater the dipole moment ,the greater the enhancement factor ,the degree of enhance‐ment is stronger .Finally ,we analyze the mechanism of Raman enhancement about DREP molecule on the grapheme .The dipole molecular is a pyrene terminal tethered a azobenzene molecular that was modified .There will happen the electron transfer of the pyrene terminal on the graphene interface through π— πinteractions ,changing the energy level of grapheme and leading to a p‐doping .The mechanism of Raman enhancement are chemical mechanisms .The study of GERS of DREP molecular can help the comprehension of grapheme and the mechanism of grapheme enhanced raman scattering ,for example the transfer of grapheme e‐lectron ,the theory of chemical enhancement mechanism and how to separate the chemical enhancement mechanism from electro‐magnetic enhancement mechanism .